|
|
The roles of semantic size and number of stimuli in asymmetric visual search |
SHEN Wenyi1, YU Zhanyu1, LENG Ying2 |
1 School of Education Science, Jiangsu Normal University, Xuzhou 221116; 2 School of Education Science, Nantong University, Nantong 226019 |
|
|
Abstract For investigating the roles of semantic size and number of stimuli in asymmetric visual search, we adopted the different semantic sizes of Chinese characters and instructed the participants to search target stimulus in two types of stimulus numbers: 6 and 12. Results showed that: (1) When the number of stimuli was 6, the search efficiency of the target with the small semantic size was higher than that of the target with the large semantic size; (2) When the number of stimuli was 12, the search efficiency of the target with the larger semantic size was higher than that of the target with smaller semantic size; (3) When the semantic size of the interferential stimuli and the target stimuli were the same, the search efficiency of the interferential stimuli with more number and large semantic size was slower. This study confirmed the interaction of spatial and numerical representations in asymmetric visual search, which supported embodied cognition theory, and extended the feature integration theory and guided search model.
|
|
|
|
|
[1] 丁锦红, 李杨, 胡荣荣, 严艳梅. (2007). 视觉搜索中空间不对称性的眼动研究.心理科学, 30(1), 116-119. [2] 方燕红, 张积家. (2011). 图-词干扰范式下的语义效应的理论及其争论.华南师范大学学报(社科版), (2), 120-124. [3] 方燕红, 张积家. (2013). 语义相似性与类别大小对图-词干扰范式下语义效应的影响.心理学报, 45(5), 523-537. [4] 贾宁, 蒋高芳. (2016). 道德概念垂直空间隐喻的心理现实性及双向映射. 心理发展与教育, 32(2), 158-165. [5] 韩振华, 曹立人. (2009). 平行搜索还是系列搜索:视觉搜索机制研究的理论分析.西北师大学报(社会科学版), (5), 129-132. [6] 胡壮麟. (2010). 认知符号学.外语学刊, (5), 20-25. [7] 吕绍爱. (2011). 视觉搜索中非对称性的实验研究.社会心理科学, 26(9), 1053-1103. [8] 李寿欣, 车晓玮, 李彦佼, 王丽, 陈恺盛. (2019). 视觉工作记忆负载类型对注意选择的影响.心理学报, 51(5), 527-542. [9] 卢凤, 朱传林, 张嫡嫡, 刘电芝. (2020). 具身知觉符号理论视角下的情绪启动效应.心理学探新, 40(4), 296-301. [10] 马艳云. (2011). 视觉搜索不对称性成因探究.人类工效学, 17(4), 33-37. [11] 马艳云, 沈模卫, 水仁德. (2001). 数量化维度的特征搜索.心理科学, 24(3), 283-285. [12] 彭晓玲, 黄丹. (2018). 任务难度对自闭症儿童视觉搜索优势显现的影响.心理科学, 41(2), 498-503. [13] 任永军. (2004). 空间维度词“大、小”的认知语义分析.聊城大学学报(社会科学版), (5), 30-33. [14] 唐佩佩, 叶浩生, 杜建政. (2015). 权力概念与空间大小:具身隐喻的视角.心理学报, 47(4), 514-521. [15] 王琦, 李红, 张丽, 陈雪梅. (2011). 数量表征的符号特异性和符号非特异性.心理科学进展, 19(6), 832-842. [16] 杨惠兰, 何先友, 赵雪汝, 张维. (2015). 权力的概念隐喻表征:来自大小与颜色隐喻的证据.心理学报, 47(7), 939-949. [17] 张常青, 王瑞明, 谢久书, 孙逊. (2013). 颜色概念的知觉符号表征与命题符号表征.心理与行为研究, 11(4), 463-469. [18] 张潮, 刘赛芳, 隋玲, 乔园园. (2019). 宽容概念的大小隐喻表征:双向性及社会性.心理与行为研究, 17(6), 824-830. [19] 章雷钢, 水仁德. (2012). 语义信息在大小数量表征中的作用.应用心理学, 18(1), 32-39. [20] 张茂林. (2007). 聋生与听力正常学生在非对称性视觉搜索中的比较研究.中国特殊教育, (2), 19-22. [21] 周子轩. (2018). 从认知角度看语言符号的范畴与语义的关系.长江丛刊, (9), 55. [22] Adriaan S., Helen T., & Suliann B. H. (2015). On the automaticity of the evaluative priming effect in the valent/non-valent categorization task.PLoS One, 10(3), e0121564. [23] Arcangelo U., Mauro E., & Barbara T. (2020). Compatibility between response position and either object typical size or semantic category: SNARC-and MARC-like effects in primary school children.Journal of Experimental Child Psychology, 189, 104682-104699. [24] Balota D. A., Cortese M. J., Sergent-Marshall S. D., Spieler D. H., & Yap M. J. (2004). Visual word recognition of single-syllable words.Journal of Experimental Psychology: General, 133(2), 283-316. [25] Faul F., Erdfelder E., Lang A. G., & Buchner A. (2007). G*Power 3.1: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences.Behavior Research Methods, 39(2), 175-191. [26] Fischer M. H., Castel A. D., Dodd M. D., & Pratt J. (2003). Perceiving numbers causes spatial shifts of attention.Nature Neuroscience, 6(6), 555-556. [27] Gibson, L. C., & Maurer, D. (2016). Development of SNARC and distance effects and their relation to mathematical and visuospatial abilities.Journal of Experimental Child Psychology, 150, 301-313. [28] Han, S. W., & Kim, M. S. (2009). Do the contents of working memory capture attention? Yes, but cognitive control matters.Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1292-1302. [29] Hoedemaker, R. S., & Gordon, P. C. (2014). Embodied language comprehension: Encoding-based and goal-driven processes.Journal of Experimental Psychology: General, 143(2), 914-929. [30] Kadosh, R. C., & Walsh, V. (2009). Numerical representation in the parietal lobes: Abstract or not abstract?Behavioral and Brain Sciences, 32(3-4), 313-328. [31] Kang S. H. K., Yap M. J., Tse C., & Kurby C. A. (2011). Semantic size does not matter: “Bigger” words are not recognized faster.Quarterly Journal of Experimental Psychology, 64(6), 1041-1047. [32] Kiefer M., Sim E. J., Herrnberger B., Grothe J., & Hoenig K. (2008). The sound of concepts: Four markers for a link between auditory and conceptual brain systems.Journal of Neuroscience, 28(47), 12224-12230. [33] Klinger M. R., Burton P. C., & Pitts G. S. (2000). Mechanisms of unconscious priming: i. response competition, not spreading activation.Journal of Experimental Psychology Learning Memory & Cognition, 26(2), 441-455. [34] Lawrence, W., & Barsalou. (1999). Perceptual symbol systems.Behavioral & Brain Sciences, 22(4), 577-660. [35] Mitchell R. O., Rashid H., Dawood F., & Alkhalidi A. (2013). Hajj crowd management and navigation system: People tracking and location-based services via integrated mobile and RFID systems. International Conference on Computer Applications Technology. IEEE. [36] O’Riordan, M., & Plaisted, K. (2001). Enhanced discrimination in autism.The Quarterly Journal of Experimental Psychology, 54A(4), 961-979. [37] Rubinsten, O., & Henik, A. (2002). Is an ant larger than a lion?Acta Psychologica, 111(1), 141-154. [38] Seegelke, C., & Wühr, P. (2018). Compatibility between object size and response side in grasping: The left hand prefers smaller objects, the right hand prefers larger objects.PeerJ, 6e6026. [39] Sereno M. E.(1993). Neural computation of pattern motion. Neural computation of pattern motion: Modeling stages of motion analysis in the primate visual cortex. MIT Press. [40] Sereno, S. C., O’Donnell, P. J. & Sereno, M. E. (2009). Size matters: Bigger is faster.Quarterly Journal of Experimental Psychology, 62(6), 1115-1122. [41] Speer N. K., Reynolds J. R., Swallow K. M., & Zacks J. M. (2009). Reading stories activates neural representations of visual and motor experiences.Psychological Science, 20(8), 989-999. [42] Tettamanti M., Buccino G., Saccuman M. C., Gallese V., Danna M., & Scifo P., et al. (2005). Listening to action-related sentences activates fronto-parietal motor circuits.Journal of Cognitive Neuroscience, 17(2), 273-281. [43] Treccani B., Mulatti C., Sulpizio S., & Job R. (2019). Does perceptual simulation explain spatial effects in word categorization?Frontiers in Psychology, 10, 1-11. [44] Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention.Cognitive Psychology, 12(1), 97-136. [45] Treisman, A., & Gormican, S. (1988). Feature analysis in early vision: Evidence from search asymmetries.Psychological Review, 95(1), 15-48. [46] Treisman, A., & Souther, J. (1985). Search asymmetry: A diagnostic for pre-attentive processing of separable features.Journal of Experimental Psychology: General, 114(3), 285-310. [47] Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity.Trends in Cognitive Sciences, 7(11), 483-488. [48] Walther, D., & Koch, C. (2006). Modeling attention to salient proto-objects.Neural Networks(9), 1395-1407. [49] Wei, W., & Cook, A. E. (2016). Semantic size and contextual congruency effects during reading: Evidence from eye movements.Discourse Processes, 53(5-6), 415-429. [50] Winter B., Matlock T., Shaki S., & Fischer M. H. (2015). Mental number space in three dimensions.Neuroscience & Biobehavioral Reviews, 57, 209-219. [51] Wolfe J. M., Cave K. R., & Franzel S. L. (1989). Guided search: An alternative to the feature integration model for visual search.Journal of Experimental Psychology: Human Perception and Performance, 15(3), 419-433. [52] Wolfe, J. M., & Gancarz, G. (1997). Guided Search 3.0. In Basic and clinical applications of vision science (pp.189-192).Dordrecht: Springer. [53] Wolfe, J. M. (2012). Guided search 4.0: current progress with a model of visual search.Integrated Models of Cognitive Systems, 1(3), 99-119. [54] Wühr, P., & Seegelke, C. (2018). Compatibility between physical stimulus size and left-right responses: Small is left and large is right.Journal of Cognition, 1(1), 17-28. [55] Yao B., Belin P., & Scheepers C. (2011). Silent reading of direct versus indirect speech activates voice-selective areas in the auditory cortex.Journal of Cognitive Neuroscience. 23(10), 3146-3152. [56] Yao B., Belin P., & Scheepers C. (2012). Brain 'talks over’ boring quotes: Top-down activation of voice-selective areas while listening to monotonous direct speech quotations.Neuroimage, 60(3), 1832-1842. [57] Yao B., Vasiljevic M., Weick M., Sereno M. E., O’Donnell P. J., & Sereno S. C. (2013). Semantic size of abstract concepts: It gets emotional when you can’t see it.PLoS One, 8(9), e75000. [58] Yu, Z. Y., & Wang, L. J. (2017). Do physical properties affect enactment effect? The regulatory function of item familiarity.The American Journal of Psychology, 130(3), 315-327. [59] Zhang, Y., & Onyper, S. (2020). Visual search asymmetry depends on target-distractor feature similarity: Is the asymmetry simply a result of distractor rejection speed?Attention, Perception, & Psychophysics, 82(4), 80-97. |
|
|
|