李敏, 孙晓辉, 李文杰, 李梦霞. 数字线估计的模型与策略:有界和无界的相似与分离[J]. 心理研究, 2024, 17(4): 301-307.
LI Min, SUN Xiaohui, LI Wenjie, LI Mengxia. Models and strategies for numerical line estimation:Similarity and separation of bounded and unbounded. Psychological Research, 2024, 17(4): 301-307.
[1] 李梦霞. (2017). SNARC效应的视觉—空间与言语—空间双编码机制研究. 华东师范大学博士学位论文. [2] 刘国芳, 辛自强. (2012). 数字线估计研究:“模型”背后的策略.心理研究, 5(02), 27-33. [3] 莫雷, 周广东, 温红博. (2010). 儿童数字估计中的心理长度.心理学报, 42(05), 569-580. [4] 邢强, 徐争鸣, 蔡新华. (2015). 小学生数字线估计中的分段策略. 数学教育学报, 24(04), 82-87. [5] 徐华, 陈英和. (2012). 儿童数字线估计研究的述评与前瞻.心理研究, 5(05), 46-50. [6] 许晓晖. (2015). 儿童数字估计能力的研究进展及其启示. 首都师范大学学报(社会科学版), (03), 148-155. [7] 臧蓓蕾, 张俊, 顾荣芳. (2019). 幼儿心理数线的发展:估计准确率与模型背后的策略.心理与行为研究, 17(06), 795-802. [8] Barth H., Slusser E., Kanjlia S., Garcia J., Taggart J., & Chase E. (2016). How feedback improves children’s numerical estimation.Psychonomic Bulletin & Review, 23(4), 1198-1205. [9] Barth, H. C., & Paladino, A. M. (2011). The development of numerical estimation: Evidence against a representational shift.Developmental Science, 14(1), 125-135. [10] Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation.Developmental Psychology, 42(1), 189-201. [11] Brannon, E. M., & Van de Walle, G. A.(2001) The development of ordinal numerical competence in young children. Cognitive Psychology, 43(1), 53-81. [12] Brannon E. M., Wusthoff C. J., Gallistel C. R., & Gibbon J. (2001). Numerical subtraction in the pigeon: Evidence for a linear subjective number scale.Psychological Science, 12(3), 238-243. [13] Cohen D. J., Blanc‐Goldhammer D., & Quinlan P. T. (2018). A mathematical model of how people solve most variants of the number‐line task.Cognitive Science, 42(8), 2621-2647. [14] Cohen, D. J., & Blanc-Goldhammer, D. (2011). Numerical bias in bounded and unbounded number line tasks.Psychonomic Bulletin & Review, 18(2), 331-338. [15] Cohen, D. J., & Ray, A. (2020). Experimental bias in number-line tasks and how to avoid them: Comment on Kim and Opfer (2017) and the introduction of the Cohen Ray number-line task.Developmental Psychology, 56(4), 846-852. [16] Cohen, D. J., & Sarnecka, B. W. (2014). Children's number-line estimation shows development of measurement skills (not number representations).Developmental Psychology, 50(6), 1640-1652. [17] Gentner, D., & Colhoun, J. (2010). Analogical processes in human thinking and learning.Springer Berlin Heidelberg, 8(3), 35-48. [18] Georges, C., & Schiltz, C. (2021). Number line tasks and their relation to arithmetics in second to fourth graders.Journal of Numerical Cognition, 7(1), 20-41. [19] Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer.Cognitive Psychology, 15(1), 1-38. [20] Honour, L. A. (2020). Children’s mental representation of number, their number line estimations and maths achievement: Exploring the role of 3D mental rotation skills. University of Southampton. [21] Kim, D., & Opfer, J. E. (2020). Compression is evident in children’s unbounded and bounded numerical estimation: Reply to Cohen and Ray (2020).Developmental Psychology, 56(4), 853-860. [22] Kim, D., & Opfer, J. E. (2017). A unified framework for bounded and unbounded numerical estimation.Developmental Psychology, 53(6), 1088-1097. [23] Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles.Cognition, 105(2), 395-438. [24] Link T., Huber S., Nuerk H. C., & Moeller K. (2014). Unbounding the mental number line—New evidence on children’s spatial representation of numbers.Frontiers in Psychology, 4, 1021. [25] Link T., Huber S., Nuerk H. C., & Moeller K. (2014). Unbounding the mental number line—New evidence on children’s spatial representation of numbers.Frontiers in Psychology, 4, 1021. [26] Luwel K., Peeters D., & Verschaffel L. (2019). Developmental change in number line estimation: A strategy-based perspective.Canadian Journal of Experimental Psychology, 73(3), 144-156. [27] Meier, B. P., & Robinson, M. D. (2004). Why the sunny side is up: Associations between affect and vertical position.Psychological Science, 15(4), 243-247. [28] Moeller K., Pixner S., Kaufmann L., & Nuerk H. C. (2009). Children’s early mental number line: Logarithmic or decomposed linear?Journal of Experimental Child Psychology, 103(4), 503-515. [29] Newman, R. S., & Berger, C. F. (1984). Children’s numerical estimation: Flexibility in the use of counting.Journal of Educational Psychology, 76(1), 55-64. [30] Peeters D., Degrande T., Ebersbach M., Verschaffel L., & Luwel K. (2016). Children’s use of number line estimation strategies.European Journal of Psychology of Education, 31(2), 117-134. [31] Peeters D., Verschaffel L., & Luwel K. (2017). Benchmark-based strategies in whole number line estimation.British Journal of Psychology, 108(4), 668-686. [32] Reinert R. M., Hartmann M., Huber S., & Moeller K. (2019). Unbounded number line estimation as a measure of numerical estimation.PLoS One, 14(3), e0213102. [33] Reinert R. M., Huber S., Nuerk H. C., & Moeller K. (2015). Strategies in unbounded number line estimation? Evidence from eye-tracking.Cognitive Processing, 16(1), 359-363. [34] Reinert R. M., Huber S., Nuerk H. C., & Moeller K. (2017). Sex differences in number line estimation: The role of numerical estimation.British Journal of Psychology, 108(2), 334-350. [35] Reinert R. M., Huber S., Nuerk H. C., & Moeller K. (2015). Multiplication facts and the mental number line: Evidence from unbounded number line estimation.Psychological Research, 79(1), 95-103. [36] Reinert, R. M., & Moeller, K. (2021). The new unbounded number line estimation task: A systematic literature review.Acta Psychologica, 219, 103366. [37] Rouder, J. N., & Geary, D. C. (2014). Children’s cognitive representation of the mathematical number line.Developmental Science, 17(4), 525-536. [38] Schneider M., Merz S., Stricker J., De Smedt B., Torbeyns J., Verschaffel L., & Luwel K. (2018). Associations of number line estimation with mathematical competence: A meta-analysis.Child Development, 89(5), 1467-1484. [39] Siegler, R. S., & Lortie‐Forgues, H. (2014). An integrative theory of numerical development.Child Development Perspectives, 8(3), 144-150. [40] Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity.Psychological Science, 14(3), 237-250 [41] Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity.Psychological Science, 14(3), 237-250. [42] Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children.Child Development, 75(2), 428-444. [43] Siegler, R. S., & Lortie‐Forgues, H. (2014). An integrative theory of numerical development.Child Development Perspectives, 8(3), 144-150. [44] Siegler, R. S., & Mu, Y. (2008). Chinese children excel on novel mathematics problems even before elementary school.Psychological Science, 19(8), 759-763. [45] Slusser E. B., Santiago R. T., & Barth H. C. (2013). Developmental change in numerical estimation.Journal of Experimental Psychology General, 142(1), 193-208. [46] Sullivan J. L., Juhasz B. J., Slattery T. J., & Barth H. C. (2011). Adults’ number-line estimation strategies: Evidence from eye movements.Psychonomic Bulletin & Review, 18(3), 557-563. [47] Van der Weijden, F. A., Kamphorst E., Willemsen R. H., Kroesbergen E. H., & Van Hoogmoed, A. H. (2018). Strategy use on bounded and unbounded number lines in typically developing adults and adults with dyscalculia: An eye-tracking study.Journal of Numerical Cognition, 4(2), 337-359. [48] Yuan L., Prather R., Mix K. S., & Smith L. B. (2020). Number representations drive number-line estimates.Child Development, 91(4), e952-e967.