尹月阳, 周玉婷, 戴广元, 陈英. 空间-数字联结的本质:顺序信息与数量信息的作用[J]. 心理研究, 2025, 18(5): 395-402.
YIN Yueyang, ZHOU Yuting, DAI Guangyuan, CHEN Ying. The nature of spatial-numerical associations:The role of sequential information and quantitative information. Psychological Research, 2025, 18(5): 395-402.
[1] 戴隆农, 潘运. (2021)数字-空间联结的内在机制:基于工作记忆的视角. 心理科学, (4), 793-799. [2] 定险峰, 靖桂芳, 徐成. (2010). SNARC效应起源的实验研究. 心理科学, (5), 1258-1261. [3] 高迪. (2018). 英文单词尾字母的类SNARC效应及距离效应研究. 苏州大学硕士学位论文. [4] 霍静静. (2019). 工作记忆序列位置提取对数字-空间联结的影响. 贵州师范大学硕士学位论文. [5] 韩萌, 毛新瑞, 蔡梦彤, 等. (2017). 大小判断任务中正负号及其异同对SNARC效应的影响. 心理学报, 49(8), 995-1008. [6] 胡林成, 熊哲宏. (2011). 刺激模拟量的空间表征:面积和亮度的类SNARC效应. 心理科学, 34(1), 58-62. [7] 金桂春, 王强强, 王有智, 吴彦文. (2016). 数字SNARC效应中大小和顺序信息的分离. 心理与行为研究,(2), 228-233+246. [8] 廖虹. (2020). 数字的两种位置信息对SNARC效应和序列位置效应的影响. 江西师范大学硕士学位论文. [9] 刘艳芳. (1998). S-r相容性的最新理论研究. 心理科学, 6, 562-563. [10] 刘雍江, 张翔, 邹维兴, 左全顺. (2018). 数量信息不能引发SNARC效应:来自视、听觉数字的证据. 鲁东大学学报(哲学社会科学版), (5), 81-85. [11] 潘运, 戴隆农, 赵竹君, 陈衍, 陈加, 赵守盈. (2019). 正负数混合呈现对负数SNARC效应的影响. 心理科学, (5), 1083-1090. [12] 沈洁. (2017). 不同空间表征下的字母类SNARC效应的研究. 苏州大学硕士学位论文. [13] 杨帆. (2019). 工作记忆执行控制对数字空间联结的影响. 东北师范大学博士学位论文. [14] 杨金桥, 仝宇光, 李今朝. (2010). 数量信息不能引发符号的空间表征. 心理学探新, 30(10), 45-49. [15] 杨金桥, 张奇. (2010). 希腊字母不同学习程度的SNARC效应. 辽宁师范大学学报(社会科学版), 33(1), 54-58. [16] 邹昌浪. (2019). 反应类型和呈现形式对分数SNARC效应的影响. 贵州师范大学博士学位论文. [17] Abrahamse E., van Dijck J. P., & Fias W. (2016). How does working memory enable number-induced spatial biases? Frontiers in Psychology, 7, 977. [18] Bächtold D., Baumüller M., & Brugger P. (1998). Stimulus-response compatibility in representational space. Neuropsychologia, 36(8), 731-735. [19] Brown M. R. G., Desouza J. F. X., Goltz H. C.et al. (2004). Comparison of memory-and visually guided saccades using event-related fMRI. Journal of NeuroPhysiology, 91(2), 873-889. [20] Buckley, P. B., & Gillman, C. B. (1974). Comparisons of digits and dot patterns. Journal of Experimental Psychology, 103(6), 1131-1136. [21] Cao B., Li F., & Li H. (2010). Notation-dependent processing of numerical magnitude: Electrophysiological evidence from Chinese numerals. Biological Psychology, 83(1), 47-55. [22] Cooney S. M., Holmes C. A., & Newell F. N. (2021). Children's spatial-numerical associations on horizontal, vertical, and sagittal axes. Journal of Experimental Child Psychology, 209. [23] Cutini S., Scarpa F., Scatturin P., DellAcqua R., & Zorzi M. (2012). Number-space interactions in the human parietal cortex: Enlightening the SNARC effect with function near-infrared spectroscopy. Cerebral Cortex, 24(2), 444-451. [24] Dehaene, S. (1996). The organization of brain activations in number comparison: Event-related potentials and the additive-factors method. Journal of Cognitive Neuroscience, 8(1), 47-68. [25] Dehaene S., Bossini S., & Giraux P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371-396. [26] Dehaene S., Dupoux E., & Mehler J. (1990). Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 626. [27] Dehaene S., Piazza M., Pinel P., & Cohen L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487-506. [28] Dollman, J. and W. H. Levine (2016). Rapid communication: The mental number line dominates alternative, explicit coding of number magnitude, Quarterly Journal of Experimental Psychology (Hove), 69(3), 403-9. [29] Dormal V, Dormal G, Joassin F, et al. (2012). A common right fronto-parietal network for numerosity and duration processing: An fMRI study. Human Brain Mapping, 33(6), 1490-1501. [30] Fias, W., & van Dijck, J. P. (2016). The temporary nature of number-space interactions. Canadian Journal of Experimental Psychology, 70(1), 33-40. [31] Fias W., van Dijck J.-P., & Gever W. (2011). How is number associated with space? The role of working memory. In S. Dehaene & E. Brannon (Eds.), Space, time and number in the brain: Searching for the foundations of mathematical thought (pp. 133-148). Elsevier. [32] Fumarola A., Prpic V., Da Pos O., Murgia M., Umiltà C., & Agostini T. (2014). Automatic spatial association for luminance. Attention, Perception, & Psychophysics, 76(3), 759-765. [33] Galton, F. (1880). Visualised numerals. Nature, 21, 252-256. [34] Gevers W., Ratinckx E., De Baene W., andFias W. (2006). Further evidence that the SNARC effect is processed along a dual-route architecture: Evidence from the lateralized readiness potential. Experimental Psychology. 53, 58-68. [35] Gevers W., Reynvoet B., & Fias W. (2003). The mental representation of ordinal sequences is spatially organized. Cognition, 87(3), B87-B95. [36] Ginsburg, V., & Gevers, W. (2015). Spatial coding of ordinal information in short-and long-term memory. Journal of Experimental Child Psychology, 9-8. [37] Ginsburg Ve?ronique., Van Dijck J. P., Previtali P., Fias W., & Gevers W. (2014). The impact of verbal working memory on number-space associations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(4), 976-986. [38] Guida A., Fartoukh M., & Mathy F. (2020). The development of working memory spatialization revealed by using the cave paradigm in a two-alternative spatial choice. Annals of the New York Academy of Sciences, 1477(1), 54-70. [39] He D. X., He X. Y., Zhao T. T., Wang J., Li L. Z., & Louwerse M. (2020). Does number perception cause automatic shifts of spatial attention? A study of the Att-SNARC effect in numbers and Chinese months. Frontiers in Psychology, 11, 680. [40] Herrera A., Macizo P., & Semenza C. (2008). The role of working memory in the association between number magnitude and space. Acta Psychologica, 128(2), 225-237. [41] Hinrichs, J. V., Yurko, D S, & Hu, J. M. (1981). Two-digit number comparison: Use of place information. Journal of Experimental Psychology: Human Perception and Performance, 7(4), 890-901. [42] Huber S., Klein E., Moeller K., & Willmes K. (2016). Spatial-numerical and ordinal positional associations coexist in parallel. Frontiers in Psychology, 7, 438. [43] Kesner, R. P. (2009). The posterior parietal cortex and long-term memory representation of spatial information. Neurobiology of Learning and Memory, 91(2), 197-206. [44] Konishi S, et al. (2002). Neural correlates of recency judgment. Journal of Neuroscience, 22, 9549-9555. [45] Lindemann O., Abolafia J. M., Pratt J., & Bekkering H. (2008). Coding strategies in number space: Memory requirements influence spatial-numerical associations. Quarterly Journal of Experimental Psychology, 61(4), 515-524. [46] Liu D., Zhou D., Li M., Li M., Dong W., Verguts T., & Chen Q. (2019). The neural mechanism of number line bisection: A fMRI study. Neuropsychologia, 129, 37-46. [47] Lukas S., Krinzinger H., Koch I., & Willmes K. (2014). Number representation: A question of look? The distance effect in comparison of English and Turkish number words. Quarterly Journal Experimental Psychology (Hove), 67(2), 260-270. [48] Marshuetz, C. (2005). Order information in working memory: An integrative review of evidence from brain and behavior. Psychological Bulletin, 131(3), 323-39. [49] Marshuetz C., Smith E. E., & Jonides J. (2000). Order information in working memory: fMRI evdence for parietal and perfrontal mechanisms. Journal of Cognitive Neuroscience, 12(2), 130-144. [50] Milner B., Corsi P., & Leonard G. (1991). Frontal-lobe contribution to recency judgements. Neuropsychologia, 29(6), 601-618. [51] Mishkin M., Ungerleider L. G., Macko K. A., (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences, 6, 414-417. [52] Moyer R. S., Landauer T. K., (1967). Time required for judgments of numerical inequality. Nature, (215). [53] Nieder, A. and D. J. Freedman, et al. (2002). Representation of the quantity of visual items in the primate prefrontal cortex. Science. 297(5587), 1708-11. [54] Oberauer, K. (2009). Design for a working memory. Psychology of Learning & Motivation, 45-100. [55] Petrides, M. (1995). Impairments on nonspatial self-ordered and externally ordered working memory tasks after lesions of the mid-dorsal part of the lateral frontal cortex in the monkey. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 15(1), 359-75. [56] Price, Mark, C., & Mentzoni, Rune, A. (2008). Where is January? The month-SNARC effect in sequence-form synaesthetes. Cortex, 44(7), 890-907. [57] Prpic V., Fumarola A., De Tommaso M., Luccio R., Murgia M., & Agostini T. (2016). Separate mechanisms for magnitude and order processing in the spatial-numerical association of response codes (SNARC) effect: The strange case of musical note values. Journal of Experimental Psychology Human Perception & Performance, 42(8), 1241-1251. [58] Proctor, R. W., & Cho, Y. S. (2006). Polarity correspondence: A general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132(3), 416-442. [59] Rugani R., Vallortigara G., Priftis, K, & Regolin, L. (2015). Number-space mapping in the newborn chick resembles humans' mental number line. Science, 347(6221), 534-6. [60] Rusconi E., Kwan B., Giordano B. L., Umiltà C., & Butterworth B. (2006). Spatial representation of pitch height: The SMARC effect. Cognition, 99, 113-129. [61] Sack A.,T. (2009). Parietal cortex and spatial cognition. Behavioural Brain Research, 202(2), 153-161. [62] Sahan M. I., Majerus S., Andres M., & Fias W. (2019). Functionally distinct contributions of parietal cortex to a numerical landmark task: An fMRI study. Cortex, 114, 28-40. [63] Sekuler, R, Rubin, E, & Armstrong, R. (1971). Processing numerical information: A choice time analysis. Journal of Experimental Psychology, 90(1), 75-80. [64] Temple, E., & Posner, M. I. (1998). Brain mechanisms of quantity are similar in 5-year-old children and adults. Proceedings of the National Academy of Sciences, 95(13), 7836-7841. [65] Turconi E., Jemel B., Rossion B., & Seron X. (2004). Electrophysiological evidence for diVerential pro-cessing of numerical quantity and order in humans. Cognitive Brain Research, 21, 22-38. [66] Van Dijck, J. P., & Fias, W. (2011). A working memory account for spatial-numerical associations. Cognition, 119(1), 114-119. [67] Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483-488. [68] Zhang P., Cao B. H., & Li F. H. (2020). SNARC effect modulated by central executive control: Revealed in a cue-based trisection task. Psychological Research, 85(prepublish), 1-14. [69] Zhao T., He X., Zhao X., Huang J., Zhang W., Shuang W., & Chen Q. (2017). The influence of time units on the flexibility of the spatial numerical association of response codes effect. British Journal of Psychology, 109(4), 1-21. [70] Zhao T. T., He X. Y., Zhao X. R., Huang J. R., Zhang W., Wu S., & Chen Q. (2018). The influence of time units on the flexibility of the spatial numerical association of response codes effect. British Journal of Psychology, 109(2), 299-320. [71] Zhou D. D., Zhong H. X., Dong W. S., Li M., Verguts T., & Chen Q. (2019). The metaphoric nature of the ordinal position effect. Quarterly Journal of Experimental Psychology, 72, 2121-2129.