王晓曦, 马瑞敏, 胡娜. 类属和主题关系分离表征的脑机制[J]. 心理研究, 2023, 16(6): 491-501.
WANG Xiaoxi, MA Ruimin, HU Na. Distinct representation of taxonomic and thematic relations in brain. Psychological Research, 2023, 16(6): 491-501.
[1] Acosta-Cabronero J., Patterson K., Fryer T. D., Hodges J. R., Pengas G., Williams G. B., & Nestor P. J. (2011). Atrophy, hypometabolism and white matter abnormalities in semantic dementia tell a coherent story.Brain, 134(7), 2025-2035. [2] Arias-Trejo, N., & Plunkett, K. (2009). Lexical-semantic priming effects during infancy.Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1536), 3633-3647. [3] Ashby, F. G., & O’Brien, J. B. (2005). Category learning and multiple memory systems.Trends in Cognitive Sciences, 9(2), 83-89. [4] Bedny M., Dravida S., & Saxe R. (2014). Shindigs, brunches, and rodeos: The neural basis of event words.Cognitive, Affective and Behavioral Neuroscience, 14(3), 891-901. [5] Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory.Trends in Cognitive Sciences, 15(11), 527-536. [6] Binder J. R., Desai R. H., Graves W. W., & Conant L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies.Cerebral Cortex, 19(12), 2767-2796. [7] Blaye A., Bernard-Peyron V., Paour J.-L., & Bonthoux F. (2006). Categorical flexibility in children: Distinguishing response flexibility from conceptual flexibility; the protracted development of taxonomic representations.European Journal of Developmental Psychology, 3(2), 163-188. [8] Blaye, A., & Bonthoux, F. (2001). Thematic and taxonomic relations in preschoolers: The development of flexibility in categorization choices.British Journal of Developmental Psychology, 19(3), 395-411. [9] Bonner M. F., Peelle J. E., Cook P. A., & Grossman M. (2013). Heteromodal conceptual processing in the angular gyrus.NeuroImage, 71, 175-186. [10] Bonnici H. M., Richter F. R., Yazar Y., & Simons J. S. (2016). Multimodal feature integration in the angular gyrus during episodic and semantic retrieval.Journal of Neuroscience, 36(20), 5462-5471. [11] Boylan C., Trueswell J. C., & Thompson-Schill S. L. (2015). Compositionality and the angular gyrus: A multi-voxel similarity analysis of the semantic composition of nouns and verbs.Neuropsychologia, 78, 130-141. [12] Chen Q., Ye C., Liang X., Cao B., Lei Y., & Li H. (2014). Automatic processing of taxonomic and thematic relations in semantic priming - Differentiation by early N400 and late frontal negativity.Neuropsychologia, 64, 54-62. [13] Cicirelli, V. G. (1976). Categorization behavior in aging subjects.Journals of Gerontology, 31(6), 676-680. [14] Clarke A., Taylor K. I., & Tyler L. K. (2011). The evolution of meaning: Spatio-temporal dynamics of visual object recognition.Journal of Cognitive Neuroscience, 23(8), 1887-1899. [15] Clarke, A., & Tyler, L. K. (2015). Understanding what we see: How we derive meaning from vision.Trends in Cognitive Sciences, 19(11), 677-687. [16] Coni A. G., Ison M., & Vivas J. (2019). Conceptual flexibility in school children: Switching between taxonomic and thematic relations. Cognitive Development, 52, Article 100827. [17] Coutanche, M. N., & Thompson-Schill, S. L. (2015). Creating concepts from converging features in human cortex.Cerebral Cortex, 25(9), 2584-2593. [18] Cui Y., Liu Y., Yang C., Cui C., Jing D., Zhang X., Chen Y., Li B., Liang Z., Chen K., Zhang Z., & Wu L. (2021). Brain structural and functional anomalies associated with simultanagnosia in patients with posterior cortical atrophy.Brain Imaging and Behavior, 16, 1148-1162. [19] de Zubicaray G. I., Hansen S., & McMahon K. L. (2013). Differential processing of thematic and categorical conceptual relations in spoken word production.Journal of Experimental Psychology: General, 142(1), 131-142. [20] Ding J., Chen S., Wang L., & Yang Y. (2017). Thematic and taxonomic relations of novel words learned from action and perceptual features.Journal of Neurolinguistics, 41, 70-84. [21] Durey, M. (2012). Damage to temporo-parietal cortex decreases incidental activation of thematic relations during spoken word comprehension.Neuropsychologia, 50(8), 1990-1997. [22] Eichenbaum, H. (2013). Memory on time.Trends in Cognitive Sciences, 17(2), 81-81. [23] Federico, G., & Brandimonte, M. A. (2019). Tool and object affordances: An ecological eye-tracking study. Brain and Cognition, 135, Article 103582. [24] Fernandino L., Binder J. R., Desai R. H., Pendl S. L., Humphries C. J., Gross W. L., Conant L. L., & Seidenberg M. S. (2016). Concept representation reflects multimodal abstraction: A framework for embodied semantics.Cerebral Cortex, 26(5), 2018-2034. Gainotti, G.(3), 299-309. [25] Geng, J., & Schnur, T. T. (2015). The representation of concrete and abstract concepts: Categorical versus associative relationships.Journal of Experimental Psychology: Learning Memory and Cognition, 41(1), 22-41. [26] Guo C. C., Gorno-Tempini M. L., Gesierich B., Henry M., Trujillo A., Shany-Ur T., Jovicich J., Robinson S. D., Kramer J. H., Rankin K. P., Miller B. L., & Seeley W. W. (2013). Anterior temporal lobe degeneration produces widespread network-driven dysfunction.Brain, 136(10), 2979-2991. [27] Harry B. B., Umla-Runge K., Lawrence A. D., Graham K. S., & Downing P. E. (2016). Evidence for integrated visual face and body representations in the anterior temporal lobes.Journal of Cognitive Neuroscience, 28(8), 1178-1193. [28] Henseler I., Mädebach A., Kotz S. A., & Jescheniak J. D. (2014). Modulating brain mechanisms resolving Lexico-semantic interference during word production: A transcranial direct current stimulation study.Journal of Cognitive Neuroscience, 26(7), 1403-1417. [29] Hurley R. S., Bonakdarpour B., Wang X., & Mesulam M. M. (2015). Asymmetric connectivity between the anterior temporal lobe and the language network.Journal of Cognitive Neuroscience, 27(3), 464-473. [30] Jackson R. L., Hoffman P., Pobric G., & Lambon Ralph, M. A. (2016). The semantic network at work and rest: Differential connectivity of anterior temporal lobe subregions.Journal of Neuroscience, 36(5), 1490-1501. [31] Joubert S., Vallet G. T., Montembeault M., Boukadi M., Wilson M. A., Laforce R., Jr., Rouleau I., & Brambati S. M. (2017). Comprehension of concrete and abstract words in semantic variant primary progressive aphasia and Alzheimer’s disease: A behavioral and neuroimaging study.Brain and Language, 170, 93-102. [32] Kalénine, S., & Buxbaum, L. J. (2016). Thematic knowledge, artifact concepts, and the left posterior temporal lobe: Where action and object semantics converge.Cortex, 82, 164-178. [33] Kalénine S., Peyrin C., Pichat C., Segebarth C., Bonthoux F., & Baciu M. (2009). The sensory-motor specificity of taxonomic and thematic conceptual relations: A behavioral and fMRI study.NeuroImage, 44(3), 1152-1162. [34] Lambon Ralph, M. A. (2014). Neurocognitive insights on conceptual knowledge and its breakdown.Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1634), Artical20120392, 1-12. [35] Lehky, S. R., & Tanaka, K. (2016). Neural representation for object recognition in inferotemporal cortex. Current Opinion in Neurobiology, 37, 23-35. [36] Lestou V., Lam J. M. L., Humphreys K., Kourtzi Z., & Humphreys G. W. (2014). A dorsal visual route necessary for global form perception: Evidence from neuropsychological fMRI.Journal of Cognitive Neuroscience, 26(3), 621-634. [37] Lewis G. A., Poeppel D., & Murphy G. L. (2015). The neural bases of taxonomic and thematic conceptual relations: An MEG study.Neuropsychologia, 68, 176-189. [38] Lin, E. L., & Murphy, G. L. (2001). Thematic relations in adults' concepts.Journal of Experimental Psychology: General, 130(1), 3-28. [39] Ma N., Vandekerckhove M., Van Hoeck N., & Van Overwalle F. (2012). Distinct recruitment of temporo-parietal junction and medial prefrontal cortex in behavior understanding and trait identification.Social Neuroscience, 7(6), 591-605. [40] Maguire M. J., Brier M. R., & Ferree T. C. (2010). EEG theta and alpha responses reveal qualitative differences in processing taxonomic versus thematic semantic relationships.Brain and Language, 114(1), 16-25. [41] Martin, A. (2010). The selectivity and functional connectivity of the anterior temporal lobes.Cerebral Cortex, 20(4), 813-825. [42] Martin, A. (2016). GRAPES—Grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain.Psychonomic Bulletin and Review, 23(4), 979-990. [43] Martin C. B., Douglas D., Newsome R. N., Man L. L. Y., & Barense M. D. (2018). Integrative and distinctive coding of visual and conceptual object features in the ventral visual stream.eLife Sciences, 7, e31873. [44] Mirman, D., & Graziano, K. M. (2012a). Damage to temporo-parietal cortex decreases incidental activation of thematic relations during spoken word comprehension.Neuropsychologia, 50(8), 1990-1997. [45] Mirman, D., & Graziano, K. M. (2012b). Individual differences in the strength of taxonomic versus thematic relations. Journal of Experimental Psychology: General, 141(4), 601-609. [46] Mirman D., Landrigan J. F., & Britt A. E. (2017). Taxonomic and thematic semantic systems.Psychological Bulletin, 143(5), 499-520. [47] Nation, K., & Snowling, M. J. (1999). Developmental differences in sensitivity to semantic relations among good and poor comprehenders: Evidence from semantic priming.Cognition, 70(1), B1-B13. [48] Ortigue S., Thompson J. C., Parasuraman R., & Graevfton S. T. (2009). Spatio-temporal dynamics of human intention understanding in temporo-parietal cortex: A combined EEG/fMRI repetition suppresion paradigm.PLoS ONE, 4(9), e6962,1-10. [49] Pascual B., Masdeu J. C., Hollenbeck M., Makris N., Insausti R., Ding S. L., & Dickerson B. C. (2015). Large-scale brain networks of the human left temporal pole: A functional connectivity MRI study.Cerebral Cortex, 25(3), 680-702. [50] Peelen, M. V., & Caramazza, A. (2012). Conceptual object representations in human anterior temporal cortex.Journal of Neuroscience, 32(45), 15728-15736. [51] Pobric G., Jefferies E., & Lambon Ralph, M. A. (2010). Amodal semantic representations depend on both anterior temporal lobes: Evidence from repetitive transcranial magnetic stimulation.Neuropsychologia, 48(5), 1336-1342. [52] Price A. R., Bonner M. F., Peelle J. E., & Grossman M. (2015). Converging evidence for the neuroanatomic basis of combinatorial semantics in the angular gyrus.Journal of Neuroscience, 35(7), 3276-3284. [53] Pulvermüller, F., & Fadiga, L. (2010). Active perception: Sensorimotor circuits as a cortical basis for language.Nature Reviews Neuroscience, 11(5), 351-360. [54] Ralph M. A. L., Jefferies E., Patterson K., & Rogers T. T. (2016). The neural and computational bases of semantic cognition.Nature Reviews Neuroscience, 18(1), 42-55. [55] Ralph M. A. L., Lowe C., & Rogers T. T. (2007). Neural basis of category-specific semantic deficits for living things: Evidence from semantic dementia, HSVE and a neural network model.Brain, 130(4), 1127-1137. [56] Ramanan S., Piguet O., & Irish M. (2018). Rethinking the role of the angular gyrus in remembering the past and imagining the future: The contextual integration model.Neuroscientist, 24(4), 342-352. [57] Ramos, J. M. J. (2014). Essential role of the perirhinal cortex in complex tactual discrimination tasks in rats.Cerebral Cortex, 24(8), 2068-2080. [58] Rice G. E., Hoffman P., & Ralph M. (2015). Graded specialization within and between the anterior temporal lobes.Annals of the New York Academy of Sciences, 1359, 84-97 [59] Rice G. E., Caswell H., Moore P., Hoffman P., & Lambon Ralph, M. A. (2018). The roles of left versus right anterior temporal lobes in semantic memory: A neuropsychological comparison of postsurgical temporal lobe epilepsy patients.Cerebral Cortex, 28(4), 1487-1501. [60] Schwartz M. F., Kimberg D. Y., Walker G. M., Brecher A., Faseyitan O. K., Dell G. S., Mirman D., & Coslett H. B. (2011). Neuroanatomical dissociation for taxonomic and thematic knowledge in the human brain.Proceedings of the National Academy of Sciences of the United States of America, 108(20), 8520-8524. [61] Seghier, M. L. (2013). The angular gyrus: Multiple functions and multiple subdivisions.Neuroscientist, 19(1), 43-61. [62] Simmons W. K., Reddish M., Bellgowan P. S. F., & Martin A. (2010). The selectivity and functional connectivity of the anterior temporal lobes.Cerebral Cortex, 20(4), 813-825. [63] Smiley, S. S., & Brown, A. L. (1979). Conceptual preference for thematic or taxonomic relations: A nonmonotonic age trend from preschool to old age.Journal of Experimental Child Psychology, 28(2), 249-257. [64] Striem-Amit E., Wang X., Bi Y., & Caramazza A. (2018). Neural representation of visual concepts in people born blind. Nature Communications, 9(1), Article 5250. [65] Suzuki, W. A., & Naya, Y. (2014). The perirhinal cortex.Annual Review of Neuroscience, 37, 39-53. [66] Thakral P. P., Madore K. P., & Schacter D. L. (2017). A role for the left angular gyrus in episodic simulation and memory.Journal of Neuroscience, 37(34), 8142-8149. [67] Tsagkaridis K., Watson C., Jax S., & Buxbaum L. (2014). The role of action representations in thematic object relations. Frontiers in Human Neuroscience, 8, Article 140,1-12. [68] Tyler L. K., Stamatakis E. A., Dick E., Bright P., Fletcher P., & Moss H. (2003). Objects and their actions: Evidence for a neurally distributed semantic system.NeuroImage, 18(2), 542-557. [69] Unger L., Fisher A. V., Nugent R., Ventura S. L., & MacLellan C. J. (2016). Developmental changes in semantic knowledge organization.Journal of Experimental Child Psychology, 146, 202-222. [70] Wamain Y., Pluciennicka E., & Kalénine S. (2015). A saw is first identified as an object used on wood: ERP evidence for temporal differences between thematic and functional similarity relations.Neuropsychologia, 71, 28-37. [71] Wang X., Wang B., & Bi Y. (2019). Close yet independent: Dissociation of social from valence and abstract semantic dimensions in the left anterior temporal lobe.Human Brain Mapping, 40(16), 4759-4776. [72] Whitlock, J. R. (2017). Posterior parietal cortex.Current Biology, 27(14),R691-R695. [73] Wright P., Randall B., Clarke A., & Tyler L. K. (2015). The perirhinal cortex and conceptual processing: Effects of feature-based statistics following damage to the anterior temporal lobes.Neuropsychologia, 76, 192-207.