|
|
|
| The facilitation of number line intervention on children’s fractional learning |
| ZHOU Dandan1, ZHAO Yu1, TANG Mingming2, QU Kemeng1, GUO Yunfei1, CHEN Qi3, LI Yongxin1 |
1 Institute of Psychology and Behavior, Henan University, Kaifeng 475004; 2 Hanlinyuan Primary School, Kaifeng 475004; 3 School of Psychology, Shenzhen University, Shenzhen 518060 |
|
|
|
|
Abstract Fractions play an important role in children’s mathematical learning process, and their learning effectiveness can predict the mastery level of more complex mathematical knowledge. However, the understanding of fractions is often interfered by natural number knowledge and fraction representation. Currently, a large amount of research has found that the number line estimation method can significantly improve elementary students’ understanding of fraction concepts. Starting from the spatial representation characteristics of fractions and their susceptibility to interference, this study combines the application of number lines in the research and teaching fields of fractions, discussing the good match between number lines and fraction features, and elaborating on the diverse applications of number line teaching methods from the perspective of positive motivation. Finally, it inspires further research to reveal the intrinsic mechanisms of number line intervention in promoting fraction learning, the influence of individuals’ mathematical abilities, cultural backgrounds, and other factors on the effectiveness of number line intervention, as well as in-depth exploration of the gamification of number lines and their deep integration with traditional culture on fraction learning.
|
|
|
|
|
|
[1] 高瑞彦, 牛美心, 杨涛, 周新林. (2018). 4~8年级学生分数数量表征的准确性及形式.心理发展与教育, 34(04), 443-452. [2] 尚俊杰, 张露. (2017). 基于认知神经科学的游戏化学习研究综述.电化教育研究, 38(02), 104-111. [3] 孙玉, 司继伟, 黄碧娟. (2016). 分数的数量表征.心理科学进展, 24(08), 1207-1216. [4] 辛自强, 李丹. (2013). 小学生在非符号材料上的分数表征方式.心理科学, 36(02), 364-371. [5] 汪运起. (2013). 儿童的分数和小数数量表征及其发展. 浙江大学博士学位论文. [6] 张丽, 辛自强, 王琦, 李红. (2012). 整数构成对分数加工的影响.心理发展与教育, 28(01), 31-38 [7] 张露, 胡若楠, 曾嘉灵, 孙金钢, 尚俊杰. (2022). 学习科学视角的分数游戏设计与应用研究.中国远程教育, (03), 68-75. [8] Booth, J. L., & Newton, K. J. (2012). Fractions: Could they really be the gatekeeper’s doorman? Contemporary Educational Psychology, 37(4), 247-253. [9] Booth J. L., Newton K. J., & Twiss-Garrity L. K. (2014). The impact of fraction magnitude knowledge on algebra performance and learning.Journal of Experimental Child Psychology, 118, 110-118. [10] Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning.Child Development, 79(4), 1016-1031. [11] Braithwaite, D. W., & Siegler, R. S. (2021). Putting fractions together.Journal of Educational Psychology, 113(3), 556-571. [12] Braithwaite D. W., Tian J., & Siegler R. S. (2018). Do children understand fraction addition? Developmental Science, 21(4), e12601. [13] Buckley, P. B., & Gillman, C. B. (1974). Comparisons of digits and dot patterns.Journal of Experimental Psychology, 103(6), 1131-1136. [14] Bustamante A. S., Begolli K. N., Alvarez-Vargas D., Bailey D. H., & Richland L. E. (2022). Fraction ball: Playful and physically active fraction and decimal learning.Journal of Educational Psychology, 114(6), 1307-1320. [15] Cantlon J. F., Brannon E. M., Carter E. J., & Pelphrey K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. Plos Biology, 4(5), 844-854, Article e125. [16] Cutini S., Scarpa F., Scatturin P., Dell'Acqua R., & Zorzi M. (2014). Number-space interactions in the human parietal cortex: Enlightening the snarc effect with functional near-infrared spectroscopy.Cerebral Cortex, 24(2), 444-451. [17] Dan, A., & Reiner, M. (2018). Reduced mental load in learning a motor visual task with virtual 3D method.Journal of Computer Assisted Learning, 34(1), 84-93. [18] DeLoache, J. S. (2000). Dual representation and young children's use of scale models.Child Development, 71(2), 329-338. [19] Denes-Raj, V., & Epstein, S. (1994). Conflict between intuitive and rational processing: When people behave against their better judgment.Journal of Personality and Social Psychology, 66(5), 819-829. [20] Eger E., Sterzer P., Russ M. O., Giraud A.-L., & Kleinschmidt A. (2003). A supramodal number representation in human intraparietal cortex.Neuron, 37(4), 719-726. [21] Fazio L. K., Kennedy C. A., & Siegler R. S. (2016). Improving children’s knowledge of fraction magnitudes.Plos One, 11(10), e0165243. [22] Fuchs L. S., Schumacher R. F., Long J., Namkung J., Hamlett C. L., Cirino P. T., .. Changas P. (2013). Improving at-risk learners’ understanding of fractions.Journal of Educational Psychology, 105(3), 683-700. [23] Gunderson E. A., Hamdan N., Hildebrand L., &Bartek V. (2019). Number line unidimensionality is a critical feature for promoting fraction magnitude concepts. Journal of Experimental Child Psychology, 187, Article 104657. [24] Gunderson E. A., Ramirez G., Beilock S. L., & Levine S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line.Developmental Psychology, 48(5), 1229-1241. [25] Hamdan, N., & Gunderson, E. A. (2017). The number line is a critical spatial-numerical representation: Evidence from a fraction intervention.Developmental Psychology, 53(3), 587-596. [26] Ischebeck A., Schocke M., & Delazer M. (2009). The processing and representation of fractions within the brain an fMRI investigation.Neuroimage, 47(1), 403-413. [27] Kaminski, J. A., & Sloutsky, V. M. (2020). The use and effectiveness of colorful, contextualized, student-made material for elementary mathematics instruction. International Journal of Stem Education, 7(1), doi.org/10.1186/540594-019-0199-7. [28] Koepp M. J., Gunn R. N., Lawrence A. D., Cunningham V. J., Dagher A., Jones T., .. Grasby P. M. (1998). Evidence for striatal dopamine release during a video game.Nature, 393(6682), 266-268. [29] Koskinen A., McMullen J., Hannula-Sormunen M., Ninaus M., & Kiili K. (2023). The strength and direction of the difficulty adaptation affect situational interest in game-based learning.Computers & Education, 194, 104694. [30] Koskinen A., McMullen J., Ninaus M., & Kiili K. (2023). Does the emotional design of scaffolds enhance learning and motivational outcomes in game-based learning? Journal of Computer Assisted Learning, 39(1), 77-93. [31] Liu C. H., Xin Z. Q., Lin C. D., & Thompson C. A. (2013). Children’s mental representation when comparing fractions with common numerators.Educational Psychology, 33(2), 175-191. [32] Matthews, P. G., & Ellis, A. B. (2018). Natural alternatives to natural number: The case of ratio.Journal of Numerical Cognition, 4(1), 19-58. [33] Meert G., Gregoire J., & Noel M. P. (2010). Comparing the magnitude of two fractions with common components: Which representations are used by 10-and 12-year-olds? Journal of Experimental Child Psychology, 107(3), 244-259. [34] Mix, K. S. (2019). Why are spatial skill and mathematics related? Child Development Perspectives, 13(2), 121-126. [35] Newcombe N. S., Levine S. C., & Mix K. S. (2015). Thinking about quantity: The intertwined development of spatial and numerical cognition.Wiley Interdisciplinary Reviews-Cognitive Science, 6(6), 491-505. [36] Park Y., Viegut A. A., & Matthews P. G. (2021). More than the sum of its parts: Exploring the development of ratio magnitude versus simple magnitude perception. Developmental Science, 24(3), Article e13043. [37] Peters E., Vastfjall D., Slovic P., Mertz C. K., Mazzocco K., & Dickert S. (2006). Numeracy and decision making.Psychological Science, 17(5), 407-413. [38] Schneider, M., & Siegler, R. S. (2010). Representations of the magnitudes of fractions.Journal of Experimental Psychology-Human Perception and Performance, 36(5), 1227-1238. [39] Schrader, C., & Nett, U. (2018). The perception of control as a predictor of emotional trends during gameplay.Learning and Instruction, 54, 62-72. [40] Sidney P. G., Thompson C. A., & Rivera F. D. (2019). Number lines, but not area models, support children’s accuracy and conceptual models of fraction division. Contemporary Educational Psychology, 58, 288-298. [41] Siegler R. S., Duncan G. J., Davis-Kean P. E., Duckworth K., Claessens A., Engel M., .. Chen M. (2012). Early predictors of high school mathematics achievement.Psychological Science, 23(10), 1271-1271. [42] Siegler, R. S., & Lortie-Forgues, H. (2014). An integrative theory of numerical development.Child Development Perspectives, 8(3), 144-150. [43] Siegler, R. S., & Pyke, A. A. (2013). Developmental and individual differences in understanding of fractions.Developmental Psychology, 49(10), 1994-2004. [44] Siegler R. S., Thompson C. A., & Schneider M. (2011). An integrated theory of whole number and fractions development.Cognitive Psychology, 62(4), 273-296. [45] Supekar K., Iuculano T., Chen L., & Menon V. (2015). Remediation of childhood math anxiety and associated neural circuits through cognitive tutoring.Journal of Neuroscience, 35(36), 12574-12583. [46] Tian J., Bartek V., Rahman M. Z., & Gunderson E. A. (2021). Learning improper fractions with the number line and the area model.Journal of Cognition and Development, 22(2), 305-327. [47] Uttal D. H., Meadow N. G., Tipton E., Hand L. L., Alden A. R., Warren C., & Newcombe N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies.Psychological Bulletin, 139(2), 352-402. [48] Wortha S. M., Bloechle J., Ninaus M., Kiili K., & Klein E. (2020). Neurofunctional plasticity in fraction learning: An fMRI training study.Trends in Neuroscience and Education, 21, 100141. [49] Zhang L., Xin Z. Q., Li F. H., Wang Q., Ding C., & Li H. (2012). An ERP study on the processing of common fractions.Experimental Brain Research, 217(1), 25-34. [50] Zhou X. L., Chen Y., Chen C. S., Jiang T., Zhang H. C., & Dong Q. (2007). Chinese kindergartners' automatic processing on numerical magnitude in stroop-like tasks.Memory & Cognition, 35(3), 464-470. |
|
|
|