|
|
The nature of spatial-numerical associations:The role of sequential information and quantitative information |
YIN Yueyang, ZHOU Yuting, DAI Guangyuan, CHEN Ying |
School of Education Sciences, Jiangsu Normal University, Xuzhou 221116 |
|
|
Abstract In order to explore the nature and causes of the Spatial-numerical association, this paper focused on the relationship between ordinal information and quantitative information. The researchers found that both quantitative and ordinal information can motivate spatial representations. By combing related studies, we found that the activation levels of the two kinds of information were affected by the experimental task. When the experimental task focused on the mental number line of long-term memory, generate the SNARC effect mainly depends on quantitative information; When the experimental task focused on the numerical order of working memory, generate the ordinal position effect that depend on ordinal information. This paper also integrated dual-route model theory, polarity theory and working memory theory to construct a dual-route model based on ordinal information and quantitative information—the unconditional path for quantitative information and the conditional path for ordinal information. In the future, we can explore the nature of spatial-digital connection from three aspects: SRC effect (stimulus-response compatibility), spatial information, and brain mechanism.
|
|
|
|
|
[1] 戴隆农, 潘运. (2021)数字-空间联结的内在机制:基于工作记忆的视角. 心理科学, (4), 793-799. [2] 定险峰, 靖桂芳, 徐成. (2010). SNARC效应起源的实验研究. 心理科学, (5), 1258-1261. [3] 高迪. (2018). 英文单词尾字母的类SNARC效应及距离效应研究. 苏州大学硕士学位论文. [4] 霍静静. (2019). 工作记忆序列位置提取对数字-空间联结的影响. 贵州师范大学硕士学位论文. [5] 韩萌, 毛新瑞, 蔡梦彤, 等. (2017). 大小判断任务中正负号及其异同对SNARC效应的影响. 心理学报, 49(8), 995-1008. [6] 胡林成, 熊哲宏. (2011). 刺激模拟量的空间表征:面积和亮度的类SNARC效应. 心理科学, 34(1), 58-62. [7] 金桂春, 王强强, 王有智, 吴彦文. (2016). 数字SNARC效应中大小和顺序信息的分离. 心理与行为研究,(2), 228-233+246. [8] 廖虹. (2020). 数字的两种位置信息对SNARC效应和序列位置效应的影响. 江西师范大学硕士学位论文. [9] 刘艳芳. (1998). S-r相容性的最新理论研究. 心理科学, 6, 562-563. [10] 刘雍江, 张翔, 邹维兴, 左全顺. (2018). 数量信息不能引发SNARC效应:来自视、听觉数字的证据. 鲁东大学学报(哲学社会科学版), (5), 81-85. [11] 潘运, 戴隆农, 赵竹君, 陈衍, 陈加, 赵守盈. (2019). 正负数混合呈现对负数SNARC效应的影响. 心理科学, (5), 1083-1090. [12] 沈洁. (2017). 不同空间表征下的字母类SNARC效应的研究. 苏州大学硕士学位论文. [13] 杨帆. (2019). 工作记忆执行控制对数字空间联结的影响. 东北师范大学博士学位论文. [14] 杨金桥, 仝宇光, 李今朝. (2010). 数量信息不能引发符号的空间表征. 心理学探新, 30(10), 45-49. [15] 杨金桥, 张奇. (2010). 希腊字母不同学习程度的SNARC效应. 辽宁师范大学学报(社会科学版), 33(1), 54-58. [16] 邹昌浪. (2019). 反应类型和呈现形式对分数SNARC效应的影响. 贵州师范大学博士学位论文. [17] Abrahamse E., van Dijck J. P., & Fias W. (2016). How does working memory enable number-induced spatial biases? Frontiers in Psychology, 7, 977. [18] Bächtold D., Baumüller M., & Brugger P. (1998). Stimulus-response compatibility in representational space. Neuropsychologia, 36(8), 731-735. [19] Brown M. R. G., Desouza J. F. X., Goltz H. C.et al. (2004). Comparison of memory-and visually guided saccades using event-related fMRI. Journal of NeuroPhysiology, 91(2), 873-889. [20] Buckley, P. B., & Gillman, C. B. (1974). Comparisons of digits and dot patterns. Journal of Experimental Psychology, 103(6), 1131-1136. [21] Cao B., Li F., & Li H. (2010). Notation-dependent processing of numerical magnitude: Electrophysiological evidence from Chinese numerals. Biological Psychology, 83(1), 47-55. [22] Cooney S. M., Holmes C. A., & Newell F. N. (2021). Children's spatial-numerical associations on horizontal, vertical, and sagittal axes. Journal of Experimental Child Psychology, 209. [23] Cutini S., Scarpa F., Scatturin P., DellAcqua R., & Zorzi M. (2012). Number-space interactions in the human parietal cortex: Enlightening the SNARC effect with function near-infrared spectroscopy. Cerebral Cortex, 24(2), 444-451. [24] Dehaene, S. (1996). The organization of brain activations in number comparison: Event-related potentials and the additive-factors method. Journal of Cognitive Neuroscience, 8(1), 47-68. [25] Dehaene S., Bossini S., & Giraux P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371-396. [26] Dehaene S., Dupoux E., & Mehler J. (1990). Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 626. [27] Dehaene S., Piazza M., Pinel P., & Cohen L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487-506. [28] Dollman, J. and W. H. Levine (2016). Rapid communication: The mental number line dominates alternative, explicit coding of number magnitude, Quarterly Journal of Experimental Psychology (Hove), 69(3), 403-9. [29] Dormal V, Dormal G, Joassin F, et al. (2012). A common right fronto-parietal network for numerosity and duration processing: An fMRI study. Human Brain Mapping, 33(6), 1490-1501. [30] Fias, W., & van Dijck, J. P. (2016). The temporary nature of number-space interactions. Canadian Journal of Experimental Psychology, 70(1), 33-40. [31] Fias W., van Dijck J.-P., & Gever W. (2011). How is number associated with space? The role of working memory. In S. Dehaene & E. Brannon (Eds.), Space, time and number in the brain: Searching for the foundations of mathematical thought (pp. 133-148). Elsevier. [32] Fumarola A., Prpic V., Da Pos O., Murgia M., Umiltà C., & Agostini T. (2014). Automatic spatial association for luminance. Attention, Perception, & Psychophysics, 76(3), 759-765. [33] Galton, F. (1880). Visualised numerals. Nature, 21, 252-256. [34] Gevers W., Ratinckx E., De Baene W., andFias W. (2006). Further evidence that the SNARC effect is processed along a dual-route architecture: Evidence from the lateralized readiness potential. Experimental Psychology. 53, 58-68. [35] Gevers W., Reynvoet B., & Fias W. (2003). The mental representation of ordinal sequences is spatially organized. Cognition, 87(3), B87-B95. [36] Ginsburg, V., & Gevers, W. (2015). Spatial coding of ordinal information in short-and long-term memory. Journal of Experimental Child Psychology, 9-8. [37] Ginsburg Ve?ronique., Van Dijck J. P., Previtali P., Fias W., & Gevers W. (2014). The impact of verbal working memory on number-space associations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(4), 976-986. [38] Guida A., Fartoukh M., & Mathy F. (2020). The development of working memory spatialization revealed by using the cave paradigm in a two-alternative spatial choice. Annals of the New York Academy of Sciences, 1477(1), 54-70. [39] He D. X., He X. Y., Zhao T. T., Wang J., Li L. Z., & Louwerse M. (2020). Does number perception cause automatic shifts of spatial attention? A study of the Att-SNARC effect in numbers and Chinese months. Frontiers in Psychology, 11, 680. [40] Herrera A., Macizo P., & Semenza C. (2008). The role of working memory in the association between number magnitude and space. Acta Psychologica, 128(2), 225-237. [41] Hinrichs, J. V., Yurko, D S, & Hu, J. M. (1981). Two-digit number comparison: Use of place information. Journal of Experimental Psychology: Human Perception and Performance, 7(4), 890-901. [42] Huber S., Klein E., Moeller K., & Willmes K. (2016). Spatial-numerical and ordinal positional associations coexist in parallel. Frontiers in Psychology, 7, 438. [43] Kesner, R. P. (2009). The posterior parietal cortex and long-term memory representation of spatial information. Neurobiology of Learning and Memory, 91(2), 197-206. [44] Konishi S, et al. (2002). Neural correlates of recency judgment. Journal of Neuroscience, 22, 9549-9555. [45] Lindemann O., Abolafia J. M., Pratt J., & Bekkering H. (2008). Coding strategies in number space: Memory requirements influence spatial-numerical associations. Quarterly Journal of Experimental Psychology, 61(4), 515-524. [46] Liu D., Zhou D., Li M., Li M., Dong W., Verguts T., & Chen Q. (2019). The neural mechanism of number line bisection: A fMRI study. Neuropsychologia, 129, 37-46. [47] Lukas S., Krinzinger H., Koch I., & Willmes K. (2014). Number representation: A question of look? The distance effect in comparison of English and Turkish number words. Quarterly Journal Experimental Psychology (Hove), 67(2), 260-270. [48] Marshuetz, C. (2005). Order information in working memory: An integrative review of evidence from brain and behavior. Psychological Bulletin, 131(3), 323-39. [49] Marshuetz C., Smith E. E., & Jonides J. (2000). Order information in working memory: fMRI evdence for parietal and perfrontal mechanisms. Journal of Cognitive Neuroscience, 12(2), 130-144. [50] Milner B., Corsi P., & Leonard G. (1991). Frontal-lobe contribution to recency judgements. Neuropsychologia, 29(6), 601-618. [51] Mishkin M., Ungerleider L. G., Macko K. A., (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences, 6, 414-417. [52] Moyer R. S., Landauer T. K., (1967). Time required for judgments of numerical inequality. Nature, (215). [53] Nieder, A. and D. J. Freedman, et al. (2002). Representation of the quantity of visual items in the primate prefrontal cortex. Science. 297(5587), 1708-11. [54] Oberauer, K. (2009). Design for a working memory. Psychology of Learning & Motivation, 45-100. [55] Petrides, M. (1995). Impairments on nonspatial self-ordered and externally ordered working memory tasks after lesions of the mid-dorsal part of the lateral frontal cortex in the monkey. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 15(1), 359-75. [56] Price, Mark, C., & Mentzoni, Rune, A. (2008). Where is January? The month-SNARC effect in sequence-form synaesthetes. Cortex, 44(7), 890-907. [57] Prpic V., Fumarola A., De Tommaso M., Luccio R., Murgia M., & Agostini T. (2016). Separate mechanisms for magnitude and order processing in the spatial-numerical association of response codes (SNARC) effect: The strange case of musical note values. Journal of Experimental Psychology Human Perception & Performance, 42(8), 1241-1251. [58] Proctor, R. W., & Cho, Y. S. (2006). Polarity correspondence: A general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132(3), 416-442. [59] Rugani R., Vallortigara G., Priftis, K, & Regolin, L. (2015). Number-space mapping in the newborn chick resembles humans' mental number line. Science, 347(6221), 534-6. [60] Rusconi E., Kwan B., Giordano B. L., Umiltà C., & Butterworth B. (2006). Spatial representation of pitch height: The SMARC effect. Cognition, 99, 113-129. [61] Sack A.,T. (2009). Parietal cortex and spatial cognition. Behavioural Brain Research, 202(2), 153-161. [62] Sahan M. I., Majerus S., Andres M., & Fias W. (2019). Functionally distinct contributions of parietal cortex to a numerical landmark task: An fMRI study. Cortex, 114, 28-40. [63] Sekuler, R, Rubin, E, & Armstrong, R. (1971). Processing numerical information: A choice time analysis. Journal of Experimental Psychology, 90(1), 75-80. [64] Temple, E., & Posner, M. I. (1998). Brain mechanisms of quantity are similar in 5-year-old children and adults. Proceedings of the National Academy of Sciences, 95(13), 7836-7841. [65] Turconi E., Jemel B., Rossion B., & Seron X. (2004). Electrophysiological evidence for diVerential pro-cessing of numerical quantity and order in humans. Cognitive Brain Research, 21, 22-38. [66] Van Dijck, J. P., & Fias, W. (2011). A working memory account for spatial-numerical associations. Cognition, 119(1), 114-119. [67] Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483-488. [68] Zhang P., Cao B. H., & Li F. H. (2020). SNARC effect modulated by central executive control: Revealed in a cue-based trisection task. Psychological Research, 85(prepublish), 1-14. [69] Zhao T., He X., Zhao X., Huang J., Zhang W., Shuang W., & Chen Q. (2017). The influence of time units on the flexibility of the spatial numerical association of response codes effect. British Journal of Psychology, 109(4), 1-21. [70] Zhao T. T., He X. Y., Zhao X. R., Huang J. R., Zhang W., Wu S., & Chen Q. (2018). The influence of time units on the flexibility of the spatial numerical association of response codes effect. British Journal of Psychology, 109(2), 299-320. [71] Zhou D. D., Zhong H. X., Dong W. S., Li M., Verguts T., & Chen Q. (2019). The metaphoric nature of the ordinal position effect. Quarterly Journal of Experimental Psychology, 72, 2121-2129. |
|
|
|