|
|
Distinct representation of taxonomic and thematic relations in brain |
WANG Xiaoxi, MA Ruimin, HU Na |
School of Pre-school and Special Education, Kunming University, Kunming 650214 |
|
|
Abstract Taxonomic relation and thematic relation are the most basic and widely used ways of human conception. Taxonomic relations based on similarity or shared features (e.g., sparrow-magpie), thematic relations based on co-occurrence in events or scenarios (e.g., coffee -milk). Here we report a systematic review of experimental psychology and cognitive neuroscience evidence of this distinction representation of taxonomic and thematic relations. The processing of taxonomic relationship needs to extract the static features of things, such as shape and color, and the participation of cognitive control resources; while thematic relationship needs to extract the dynamic characteristics, such as time-space relationship and event background of things, and needs the support from memory system. The research on the brain mechanism of these two kinds of relationships shows that they are separated in development trend, processing time and brain mechanism. In terms of age development trend, children are more inclined to use thematic relationship for classification; In the time process, thematic relationship is activated earlier. Taxonomic relationship closely related to anterior temporal lobe region which was directly connected prefrontal lobe. Thematic relationship processing is mainly related to the temporo-parietal junction, which is closely related to the hippocampus and visual cortex. The representation of taxonomic and thematic relationships is based on complex neural networks, involving the brain regions such as sensory perception, cognitive control and memory. Future researches were need to clarify the representation and processing neural network of these two important relationships.
|
|
|
|
|
[1] Acosta-Cabronero J., Patterson K., Fryer T. D., Hodges J. R., Pengas G., Williams G. B., & Nestor P. J. (2011). Atrophy, hypometabolism and white matter abnormalities in semantic dementia tell a coherent story.Brain, 134(7), 2025-2035. [2] Arias-Trejo, N., & Plunkett, K. (2009). Lexical-semantic priming effects during infancy.Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1536), 3633-3647. [3] Ashby, F. G., & O’Brien, J. B. (2005). Category learning and multiple memory systems.Trends in Cognitive Sciences, 9(2), 83-89. [4] Bedny M., Dravida S., & Saxe R. (2014). Shindigs, brunches, and rodeos: The neural basis of event words.Cognitive, Affective and Behavioral Neuroscience, 14(3), 891-901. [5] Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory.Trends in Cognitive Sciences, 15(11), 527-536. [6] Binder J. R., Desai R. H., Graves W. W., & Conant L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies.Cerebral Cortex, 19(12), 2767-2796. [7] Blaye A., Bernard-Peyron V., Paour J.-L., & Bonthoux F. (2006). Categorical flexibility in children: Distinguishing response flexibility from conceptual flexibility; the protracted development of taxonomic representations.European Journal of Developmental Psychology, 3(2), 163-188. [8] Blaye, A., & Bonthoux, F. (2001). Thematic and taxonomic relations in preschoolers: The development of flexibility in categorization choices.British Journal of Developmental Psychology, 19(3), 395-411. [9] Bonner M. F., Peelle J. E., Cook P. A., & Grossman M. (2013). Heteromodal conceptual processing in the angular gyrus.NeuroImage, 71, 175-186. [10] Bonnici H. M., Richter F. R., Yazar Y., & Simons J. S. (2016). Multimodal feature integration in the angular gyrus during episodic and semantic retrieval.Journal of Neuroscience, 36(20), 5462-5471. [11] Boylan C., Trueswell J. C., & Thompson-Schill S. L. (2015). Compositionality and the angular gyrus: A multi-voxel similarity analysis of the semantic composition of nouns and verbs.Neuropsychologia, 78, 130-141. [12] Chen Q., Ye C., Liang X., Cao B., Lei Y., & Li H. (2014). Automatic processing of taxonomic and thematic relations in semantic priming - Differentiation by early N400 and late frontal negativity.Neuropsychologia, 64, 54-62. [13] Cicirelli, V. G. (1976). Categorization behavior in aging subjects.Journals of Gerontology, 31(6), 676-680. [14] Clarke A., Taylor K. I., & Tyler L. K. (2011). The evolution of meaning: Spatio-temporal dynamics of visual object recognition.Journal of Cognitive Neuroscience, 23(8), 1887-1899. [15] Clarke, A., & Tyler, L. K. (2015). Understanding what we see: How we derive meaning from vision.Trends in Cognitive Sciences, 19(11), 677-687. [16] Coni A. G., Ison M., & Vivas J. (2019). Conceptual flexibility in school children: Switching between taxonomic and thematic relations. Cognitive Development, 52, Article 100827. [17] Coutanche, M. N., & Thompson-Schill, S. L. (2015). Creating concepts from converging features in human cortex.Cerebral Cortex, 25(9), 2584-2593. [18] Cui Y., Liu Y., Yang C., Cui C., Jing D., Zhang X., Chen Y., Li B., Liang Z., Chen K., Zhang Z., & Wu L. (2021). Brain structural and functional anomalies associated with simultanagnosia in patients with posterior cortical atrophy.Brain Imaging and Behavior, 16, 1148-1162. [19] de Zubicaray G. I., Hansen S., & McMahon K. L. (2013). Differential processing of thematic and categorical conceptual relations in spoken word production.Journal of Experimental Psychology: General, 142(1), 131-142. [20] Ding J., Chen S., Wang L., & Yang Y. (2017). Thematic and taxonomic relations of novel words learned from action and perceptual features.Journal of Neurolinguistics, 41, 70-84. [21] Durey, M. (2012). Damage to temporo-parietal cortex decreases incidental activation of thematic relations during spoken word comprehension.Neuropsychologia, 50(8), 1990-1997. [22] Eichenbaum, H. (2013). Memory on time.Trends in Cognitive Sciences, 17(2), 81-81. [23] Federico, G., & Brandimonte, M. A. (2019). Tool and object affordances: An ecological eye-tracking study. Brain and Cognition, 135, Article 103582. [24] Fernandino L., Binder J. R., Desai R. H., Pendl S. L., Humphries C. J., Gross W. L., Conant L. L., & Seidenberg M. S. (2016). Concept representation reflects multimodal abstraction: A framework for embodied semantics.Cerebral Cortex, 26(5), 2018-2034. Gainotti, G.(3), 299-309. [25] Geng, J., & Schnur, T. T. (2015). The representation of concrete and abstract concepts: Categorical versus associative relationships.Journal of Experimental Psychology: Learning Memory and Cognition, 41(1), 22-41. [26] Guo C. C., Gorno-Tempini M. L., Gesierich B., Henry M., Trujillo A., Shany-Ur T., Jovicich J., Robinson S. D., Kramer J. H., Rankin K. P., Miller B. L., & Seeley W. W. (2013). Anterior temporal lobe degeneration produces widespread network-driven dysfunction.Brain, 136(10), 2979-2991. [27] Harry B. B., Umla-Runge K., Lawrence A. D., Graham K. S., & Downing P. E. (2016). Evidence for integrated visual face and body representations in the anterior temporal lobes.Journal of Cognitive Neuroscience, 28(8), 1178-1193. [28] Henseler I., Mädebach A., Kotz S. A., & Jescheniak J. D. (2014). Modulating brain mechanisms resolving Lexico-semantic interference during word production: A transcranial direct current stimulation study.Journal of Cognitive Neuroscience, 26(7), 1403-1417. [29] Hurley R. S., Bonakdarpour B., Wang X., & Mesulam M. M. (2015). Asymmetric connectivity between the anterior temporal lobe and the language network.Journal of Cognitive Neuroscience, 27(3), 464-473. [30] Jackson R. L., Hoffman P., Pobric G., & Lambon Ralph, M. A. (2016). The semantic network at work and rest: Differential connectivity of anterior temporal lobe subregions.Journal of Neuroscience, 36(5), 1490-1501. [31] Joubert S., Vallet G. T., Montembeault M., Boukadi M., Wilson M. A., Laforce R., Jr., Rouleau I., & Brambati S. M. (2017). Comprehension of concrete and abstract words in semantic variant primary progressive aphasia and Alzheimer’s disease: A behavioral and neuroimaging study.Brain and Language, 170, 93-102. [32] Kalénine, S., & Buxbaum, L. J. (2016). Thematic knowledge, artifact concepts, and the left posterior temporal lobe: Where action and object semantics converge.Cortex, 82, 164-178. [33] Kalénine S., Peyrin C., Pichat C., Segebarth C., Bonthoux F., & Baciu M. (2009). The sensory-motor specificity of taxonomic and thematic conceptual relations: A behavioral and fMRI study.NeuroImage, 44(3), 1152-1162. [34] Lambon Ralph, M. A. (2014). Neurocognitive insights on conceptual knowledge and its breakdown.Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1634), Artical20120392, 1-12. [35] Lehky, S. R., & Tanaka, K. (2016). Neural representation for object recognition in inferotemporal cortex. Current Opinion in Neurobiology, 37, 23-35. [36] Lestou V., Lam J. M. L., Humphreys K., Kourtzi Z., & Humphreys G. W. (2014). A dorsal visual route necessary for global form perception: Evidence from neuropsychological fMRI.Journal of Cognitive Neuroscience, 26(3), 621-634. [37] Lewis G. A., Poeppel D., & Murphy G. L. (2015). The neural bases of taxonomic and thematic conceptual relations: An MEG study.Neuropsychologia, 68, 176-189. [38] Lin, E. L., & Murphy, G. L. (2001). Thematic relations in adults' concepts.Journal of Experimental Psychology: General, 130(1), 3-28. [39] Ma N., Vandekerckhove M., Van Hoeck N., & Van Overwalle F. (2012). Distinct recruitment of temporo-parietal junction and medial prefrontal cortex in behavior understanding and trait identification.Social Neuroscience, 7(6), 591-605. [40] Maguire M. J., Brier M. R., & Ferree T. C. (2010). EEG theta and alpha responses reveal qualitative differences in processing taxonomic versus thematic semantic relationships.Brain and Language, 114(1), 16-25. [41] Martin, A. (2010). The selectivity and functional connectivity of the anterior temporal lobes.Cerebral Cortex, 20(4), 813-825. [42] Martin, A. (2016). GRAPES—Grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain.Psychonomic Bulletin and Review, 23(4), 979-990. [43] Martin C. B., Douglas D., Newsome R. N., Man L. L. Y., & Barense M. D. (2018). Integrative and distinctive coding of visual and conceptual object features in the ventral visual stream.eLife Sciences, 7, e31873. [44] Mirman, D., & Graziano, K. M. (2012a). Damage to temporo-parietal cortex decreases incidental activation of thematic relations during spoken word comprehension.Neuropsychologia, 50(8), 1990-1997. [45] Mirman, D., & Graziano, K. M. (2012b). Individual differences in the strength of taxonomic versus thematic relations. Journal of Experimental Psychology: General, 141(4), 601-609. [46] Mirman D., Landrigan J. F., & Britt A. E. (2017). Taxonomic and thematic semantic systems.Psychological Bulletin, 143(5), 499-520. [47] Nation, K., & Snowling, M. J. (1999). Developmental differences in sensitivity to semantic relations among good and poor comprehenders: Evidence from semantic priming.Cognition, 70(1), B1-B13. [48] Ortigue S., Thompson J. C., Parasuraman R., & Graevfton S. T. (2009). Spatio-temporal dynamics of human intention understanding in temporo-parietal cortex: A combined EEG/fMRI repetition suppresion paradigm.PLoS ONE, 4(9), e6962,1-10. [49] Pascual B., Masdeu J. C., Hollenbeck M., Makris N., Insausti R., Ding S. L., & Dickerson B. C. (2015). Large-scale brain networks of the human left temporal pole: A functional connectivity MRI study.Cerebral Cortex, 25(3), 680-702. [50] Peelen, M. V., & Caramazza, A. (2012). Conceptual object representations in human anterior temporal cortex.Journal of Neuroscience, 32(45), 15728-15736. [51] Pobric G., Jefferies E., & Lambon Ralph, M. A. (2010). Amodal semantic representations depend on both anterior temporal lobes: Evidence from repetitive transcranial magnetic stimulation.Neuropsychologia, 48(5), 1336-1342. [52] Price A. R., Bonner M. F., Peelle J. E., & Grossman M. (2015). Converging evidence for the neuroanatomic basis of combinatorial semantics in the angular gyrus.Journal of Neuroscience, 35(7), 3276-3284. [53] Pulvermüller, F., & Fadiga, L. (2010). Active perception: Sensorimotor circuits as a cortical basis for language.Nature Reviews Neuroscience, 11(5), 351-360. [54] Ralph M. A. L., Jefferies E., Patterson K., & Rogers T. T. (2016). The neural and computational bases of semantic cognition.Nature Reviews Neuroscience, 18(1), 42-55. [55] Ralph M. A. L., Lowe C., & Rogers T. T. (2007). Neural basis of category-specific semantic deficits for living things: Evidence from semantic dementia, HSVE and a neural network model.Brain, 130(4), 1127-1137. [56] Ramanan S., Piguet O., & Irish M. (2018). Rethinking the role of the angular gyrus in remembering the past and imagining the future: The contextual integration model.Neuroscientist, 24(4), 342-352. [57] Ramos, J. M. J. (2014). Essential role of the perirhinal cortex in complex tactual discrimination tasks in rats.Cerebral Cortex, 24(8), 2068-2080. [58] Rice G. E., Hoffman P., & Ralph M. (2015). Graded specialization within and between the anterior temporal lobes.Annals of the New York Academy of Sciences, 1359, 84-97 [59] Rice G. E., Caswell H., Moore P., Hoffman P., & Lambon Ralph, M. A. (2018). The roles of left versus right anterior temporal lobes in semantic memory: A neuropsychological comparison of postsurgical temporal lobe epilepsy patients.Cerebral Cortex, 28(4), 1487-1501. [60] Schwartz M. F., Kimberg D. Y., Walker G. M., Brecher A., Faseyitan O. K., Dell G. S., Mirman D., & Coslett H. B. (2011). Neuroanatomical dissociation for taxonomic and thematic knowledge in the human brain.Proceedings of the National Academy of Sciences of the United States of America, 108(20), 8520-8524. [61] Seghier, M. L. (2013). The angular gyrus: Multiple functions and multiple subdivisions.Neuroscientist, 19(1), 43-61. [62] Simmons W. K., Reddish M., Bellgowan P. S. F., & Martin A. (2010). The selectivity and functional connectivity of the anterior temporal lobes.Cerebral Cortex, 20(4), 813-825. [63] Smiley, S. S., & Brown, A. L. (1979). Conceptual preference for thematic or taxonomic relations: A nonmonotonic age trend from preschool to old age.Journal of Experimental Child Psychology, 28(2), 249-257. [64] Striem-Amit E., Wang X., Bi Y., & Caramazza A. (2018). Neural representation of visual concepts in people born blind. Nature Communications, 9(1), Article 5250. [65] Suzuki, W. A., & Naya, Y. (2014). The perirhinal cortex.Annual Review of Neuroscience, 37, 39-53. [66] Thakral P. P., Madore K. P., & Schacter D. L. (2017). A role for the left angular gyrus in episodic simulation and memory.Journal of Neuroscience, 37(34), 8142-8149. [67] Tsagkaridis K., Watson C., Jax S., & Buxbaum L. (2014). The role of action representations in thematic object relations. Frontiers in Human Neuroscience, 8, Article 140,1-12. [68] Tyler L. K., Stamatakis E. A., Dick E., Bright P., Fletcher P., & Moss H. (2003). Objects and their actions: Evidence for a neurally distributed semantic system.NeuroImage, 18(2), 542-557. [69] Unger L., Fisher A. V., Nugent R., Ventura S. L., & MacLellan C. J. (2016). Developmental changes in semantic knowledge organization.Journal of Experimental Child Psychology, 146, 202-222. [70] Wamain Y., Pluciennicka E., & Kalénine S. (2015). A saw is first identified as an object used on wood: ERP evidence for temporal differences between thematic and functional similarity relations.Neuropsychologia, 71, 28-37. [71] Wang X., Wang B., & Bi Y. (2019). Close yet independent: Dissociation of social from valence and abstract semantic dimensions in the left anterior temporal lobe.Human Brain Mapping, 40(16), 4759-4776. [72] Whitlock, J. R. (2017). Posterior parietal cortex.Current Biology, 27(14),R691-R695. [73] Wright P., Randall B., Clarke A., & Tyler L. K. (2015). The perirhinal cortex and conceptual processing: Effects of feature-based statistics following damage to the anterior temporal lobes.Neuropsychologia, 76, 192-207. |
|
|
|