|
|
Models and strategies for numerical line estimation:Similarity and separation of bounded and unbounded |
LI Min1,2, SUN Xiaohui1, LI Wenjie1, LI Mengxia1 |
1 School of Teacher Education, Huzhou University, Huzhou 313000; 2 Huzhou Aishan Primany School, Huzhou 313000 |
|
|
Abstract As the unbounded number line estimation task was proposed by Cohen in 2011, more and more studies have shown that this task overcomes the limitations of the traditional bounded number line estimation task, and it is able to reflect a purer quantitative representation. However, the similarities and differences between the model and strategy of unbounded number line estimation and bounded number line estimation are yet to be scrutinized. This article respectively sorts out the number representation models and estimation strategies in the bounded and unbounded number line estimation tasks and analyzes the similarities and differences of the number line representation models as well as the development and transformation of estimation strategies in the two tasks, and further, speculates on the relationship between the estimation strategy and the representation model, in order to provide a reference for the related research of number cognition and number line representation.
|
|
|
|
|
[1] 李梦霞. (2017). SNARC效应的视觉—空间与言语—空间双编码机制研究. 华东师范大学博士学位论文. [2] 刘国芳, 辛自强. (2012). 数字线估计研究:“模型”背后的策略.心理研究, 5(02), 27-33. [3] 莫雷, 周广东, 温红博. (2010). 儿童数字估计中的心理长度.心理学报, 42(05), 569-580. [4] 邢强, 徐争鸣, 蔡新华. (2015). 小学生数字线估计中的分段策略. 数学教育学报, 24(04), 82-87. [5] 徐华, 陈英和. (2012). 儿童数字线估计研究的述评与前瞻.心理研究, 5(05), 46-50. [6] 许晓晖. (2015). 儿童数字估计能力的研究进展及其启示. 首都师范大学学报(社会科学版), (03), 148-155. [7] 臧蓓蕾, 张俊, 顾荣芳. (2019). 幼儿心理数线的发展:估计准确率与模型背后的策略.心理与行为研究, 17(06), 795-802. [8] Barth H., Slusser E., Kanjlia S., Garcia J., Taggart J., & Chase E. (2016). How feedback improves children’s numerical estimation.Psychonomic Bulletin & Review, 23(4), 1198-1205. [9] Barth, H. C., & Paladino, A. M. (2011). The development of numerical estimation: Evidence against a representational shift.Developmental Science, 14(1), 125-135. [10] Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation.Developmental Psychology, 42(1), 189-201. [11] Brannon, E. M., & Van de Walle, G. A.(2001) The development of ordinal numerical competence in young children. Cognitive Psychology, 43(1), 53-81. [12] Brannon E. M., Wusthoff C. J., Gallistel C. R., & Gibbon J. (2001). Numerical subtraction in the pigeon: Evidence for a linear subjective number scale.Psychological Science, 12(3), 238-243. [13] Cohen D. J., Blanc‐Goldhammer D., & Quinlan P. T. (2018). A mathematical model of how people solve most variants of the number‐line task.Cognitive Science, 42(8), 2621-2647. [14] Cohen, D. J., & Blanc-Goldhammer, D. (2011). Numerical bias in bounded and unbounded number line tasks.Psychonomic Bulletin & Review, 18(2), 331-338. [15] Cohen, D. J., & Ray, A. (2020). Experimental bias in number-line tasks and how to avoid them: Comment on Kim and Opfer (2017) and the introduction of the Cohen Ray number-line task.Developmental Psychology, 56(4), 846-852. [16] Cohen, D. J., & Sarnecka, B. W. (2014). Children's number-line estimation shows development of measurement skills (not number representations).Developmental Psychology, 50(6), 1640-1652. [17] Gentner, D., & Colhoun, J. (2010). Analogical processes in human thinking and learning.Springer Berlin Heidelberg, 8(3), 35-48. [18] Georges, C., & Schiltz, C. (2021). Number line tasks and their relation to arithmetics in second to fourth graders.Journal of Numerical Cognition, 7(1), 20-41. [19] Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer.Cognitive Psychology, 15(1), 1-38. [20] Honour, L. A. (2020). Children’s mental representation of number, their number line estimations and maths achievement: Exploring the role of 3D mental rotation skills. University of Southampton. [21] Kim, D., & Opfer, J. E. (2020). Compression is evident in children’s unbounded and bounded numerical estimation: Reply to Cohen and Ray (2020).Developmental Psychology, 56(4), 853-860. [22] Kim, D., & Opfer, J. E. (2017). A unified framework for bounded and unbounded numerical estimation.Developmental Psychology, 53(6), 1088-1097. [23] Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles.Cognition, 105(2), 395-438. [24] Link T., Huber S., Nuerk H. C., & Moeller K. (2014). Unbounding the mental number line—New evidence on children’s spatial representation of numbers.Frontiers in Psychology, 4, 1021. [25] Link T., Huber S., Nuerk H. C., & Moeller K. (2014). Unbounding the mental number line—New evidence on children’s spatial representation of numbers.Frontiers in Psychology, 4, 1021. [26] Luwel K., Peeters D., & Verschaffel L. (2019). Developmental change in number line estimation: A strategy-based perspective.Canadian Journal of Experimental Psychology, 73(3), 144-156. [27] Meier, B. P., & Robinson, M. D. (2004). Why the sunny side is up: Associations between affect and vertical position.Psychological Science, 15(4), 243-247. [28] Moeller K., Pixner S., Kaufmann L., & Nuerk H. C. (2009). Children’s early mental number line: Logarithmic or decomposed linear?Journal of Experimental Child Psychology, 103(4), 503-515. [29] Newman, R. S., & Berger, C. F. (1984). Children’s numerical estimation: Flexibility in the use of counting.Journal of Educational Psychology, 76(1), 55-64. [30] Peeters D., Degrande T., Ebersbach M., Verschaffel L., & Luwel K. (2016). Children’s use of number line estimation strategies.European Journal of Psychology of Education, 31(2), 117-134. [31] Peeters D., Verschaffel L., & Luwel K. (2017). Benchmark-based strategies in whole number line estimation.British Journal of Psychology, 108(4), 668-686. [32] Reinert R. M., Hartmann M., Huber S., & Moeller K. (2019). Unbounded number line estimation as a measure of numerical estimation.PLoS One, 14(3), e0213102. [33] Reinert R. M., Huber S., Nuerk H. C., & Moeller K. (2015). Strategies in unbounded number line estimation? Evidence from eye-tracking.Cognitive Processing, 16(1), 359-363. [34] Reinert R. M., Huber S., Nuerk H. C., & Moeller K. (2017). Sex differences in number line estimation: The role of numerical estimation.British Journal of Psychology, 108(2), 334-350. [35] Reinert R. M., Huber S., Nuerk H. C., & Moeller K. (2015). Multiplication facts and the mental number line: Evidence from unbounded number line estimation.Psychological Research, 79(1), 95-103. [36] Reinert, R. M., & Moeller, K. (2021). The new unbounded number line estimation task: A systematic literature review.Acta Psychologica, 219, 103366. [37] Rouder, J. N., & Geary, D. C. (2014). Children’s cognitive representation of the mathematical number line.Developmental Science, 17(4), 525-536. [38] Schneider M., Merz S., Stricker J., De Smedt B., Torbeyns J., Verschaffel L., & Luwel K. (2018). Associations of number line estimation with mathematical competence: A meta-analysis.Child Development, 89(5), 1467-1484. [39] Siegler, R. S., & Lortie‐Forgues, H. (2014). An integrative theory of numerical development.Child Development Perspectives, 8(3), 144-150. [40] Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity.Psychological Science, 14(3), 237-250 [41] Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity.Psychological Science, 14(3), 237-250. [42] Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children.Child Development, 75(2), 428-444. [43] Siegler, R. S., & Lortie‐Forgues, H. (2014). An integrative theory of numerical development.Child Development Perspectives, 8(3), 144-150. [44] Siegler, R. S., & Mu, Y. (2008). Chinese children excel on novel mathematics problems even before elementary school.Psychological Science, 19(8), 759-763. [45] Slusser E. B., Santiago R. T., & Barth H. C. (2013). Developmental change in numerical estimation.Journal of Experimental Psychology General, 142(1), 193-208. [46] Sullivan J. L., Juhasz B. J., Slattery T. J., & Barth H. C. (2011). Adults’ number-line estimation strategies: Evidence from eye movements.Psychonomic Bulletin & Review, 18(3), 557-563. [47] Van der Weijden, F. A., Kamphorst E., Willemsen R. H., Kroesbergen E. H., & Van Hoogmoed, A. H. (2018). Strategy use on bounded and unbounded number lines in typically developing adults and adults with dyscalculia: An eye-tracking study.Journal of Numerical Cognition, 4(2), 337-359. [48] Yuan L., Prather R., Mix K. S., & Smith L. B. (2020). Number representations drive number-line estimates.Child Development, 91(4), e952-e967. |
|
|
|