Review on fNIRS research of brain dysfunction in individuals with autism spectrum disorders
HUANG Sanhong1,2, WANG Tao1,3
1 Chongqing Key Laboratory of Psychological Diagnosis and Education Technology for Children with Special Needs,Chongqing Normal University, Chongqing 401331; 2 Zhongshan Special Education School, Zhongshan 528400; 3 Collaborative Innovation Team for Exceptional Children's Mental Health Research, Chongqing Key Research Base of Humanities and Social Sciences, Chongqing 401331
黄三红, 王滔. 自闭症谱系障碍个体脑功能异常的fNIRS研究[J]. 心理研究, 2025, 18(4): 338-347.
HUANG Sanhong, WANG Tao. Review on fNIRS research of brain dysfunction in individuals with autism spectrum disorders. Psychological Research, 2025, 18(4): 338-347.
[1] 李翠翠, 陈玲珑, 徐海波. (2021). 不同性别自闭症谱系障碍患儿的静息态脑功能成像研究. 中华神经医学杂志, 20(2), 188-195. [2] 李军, 程卉怡. (2018). 结合光学脑成像及机器学习分类算法对自闭症大脑活动特征的研究进展. 华南师范大学学报(自然科学版), 50(5), 1-13. [3] 钟慧. (2020). 孤独症患者脑功能连接的性别差异及发展轨迹研究. 南京师范大学硕士学位论文. [4] American Psychiatric Association.(2013). Diagnostic and statistical manual of mental disorders: DSM-5. Washington, DC: American Psychiatric Publishing. [5] Baker J. K., Fenning R. M., Howland M. A., Baucom B. R., Moffitt J., & Erath S. A. (2015). Brief report: A pilot study of parent-child biobehavioral synchrony in autism spectrum disorder. Journal of Autism and Developmental Disorders, 45(12), 4140-4146. [6] Barttfeld P., Wicker B., Cukier S., Navarta S., Lew S., Leiguarda R., & Sigman M. (2012). State-dependent changes of connectivity patterns and functional brain network topology in autism spectrum disorder. Neuropsychologia, 50(14), 3653-3662. [7] Bhat A. N., McDonald N. M., Eilbott J. E., & Pelphrey K. A. (2019). Exploring cortical activation and connectivity in infants with and without familial risk for autism during naturalistic social interactions: A preliminary study. Infant Behavior and Development, 57, 101337. [8] Boddaert N., Belin P., Chabane N., Poline J. B., Barthélémy C., Mouren-Simeoni M. C., et al. (2003). Perception of complex sounds: Abnormal pattern of cortical activation in autism. American Journal of Psychiatry, 160(11), 2057-2060. [9] Boddaert N., Chabane N., Belin P., Bourgeois M., Royer V., Barthelemy C., et al. (2004). Perception of complex sounds in autism: Abnormal auditory cortical processing in children. American Journal of Psychiatry, 161(11), 2117-2120. [10] Cader S., Cifelli A., Abu-Omar Y., Palace J., & Matthews P. M. (2006). Reduced brain functional reserve and altered functional connectivity in patients with multiple sclerosis. Brain, 129(2), 527-537. [11] Cao W., Zhu H., Li Y., Wang Y., Bai W., Lao U., et al. (2021). The development of brain network in males with autism spectrum disorders from childhood to adolescence: Evidence from fNIRS study. Brain Sciences, 11(1), 120-133. [12] Caria, A., & de Falco, S. (2015). Anterior insular cortex regulation in autism spectrum disorders. Frontiers in Behavioral Neuroscience, 9, 1-9. [13] Carper, R. A., & Courchesne, E. (2005). Localized enlargement of the frontal cortex in early autism. Biological Psychiatry, 57(2), 126-133. [14] Carper R. A., Moses P., Tigue Z. D., & Courchesne E. (2002). Cerebral lobes in autism: Early hyperplasia and abnormal age effects. Neuroimage, 16(4), 1038-1051. [15] Chapin, T. J., & Russell-Chapin, L. A. (2013). Neurotherapy and neurofeedback: Brain-based treatment for psychological and behavioral problems. New York: Routledge. [16] Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effect: The perception-behavior link and social interaction. Journal of Personality and Social Psychology, 76(6), 893-910. [17] Cheng H., Yu J., Xu L., & Li J. (2019). Power spectrum of spontaneous cerebral homodynamic oscillation shows a distinct pattern in autism spectrum disorder. Biomedical Optics Express, 10(3), 1383-1392. [18] Dawson G., Finley C., Phillips S., & Galpert L. (1986). Hemispheric specialization and the language abilities of autistic children. Child Development, 57(6), 1440-1453. [19] De Fossé L., Hodge S. M., Makris N., Kennedy D. N., Caviness Jr V. S., McGrath L., et al. (2004). Language‐association cortex asymmetry in autism and specific language impairment. Annals of Neurology, 56(6), 757-766. [20] Dundas E. M., Plaut D. C., & Behrmann M. (2013). The joint development of hemispheric lateralization for words and faces. Journal of Experimental Psychology: General, 142(2), 348-358. [21] Flagg E. J., Cardy J. E. O., Roberts W., & Roberts T. P. (2005). Language lateralization development in children with autism: Insights from the late field magnetoencephalogram. Neuroscience Letters, 386(2), 82-87. [22] Fr?ssle S., Paulus F. M., Krach S., Schweinberger S. R., Stephan K. E., & Jansen A. (2016). Mechanisms of hemispheric lateralization: Asymmetric interhemispheric recruitment in the face perception network. Neuroimage, 124, 977-988. [23] Frazier T. W., Georgiades S., Bishop S.L., & Hardan A. Y. (2014). Behavioral and cognitive characteristics of females and males with autism in the Simons Simplex Collection. Journal of the American Academy of Child and Adolescent Psychiatry, 53(3), 329-340. [24] Friedrich E. V., Suttie N., Sivanathan A., Lim T., Louchart S., & Pineda J. A. (2014). Brain-computer interface game applications for combined neurofeedback and biofeedback treatment for children on the autism spectrum. Frontiers in Neuroengineering, 7(21), 1-7. [25] Gervais H., Belin P., Boddaert N., Leboyer M., Coez A., Sfaello I., et al. (2004). Abnormal cortical voice processing in autism. Nature Neuroscience, 7(8), 801-802. [26] H?berling I. S., Corballis P. M., & Corballis M. C. (2016). Language, gesture, and handedness: Evidence for independent lateralized networks. Cortex, 82, 72-85. [27] Hernandez L. M., Rudie J. D., Green S. A., Bookheimer S., & Dapretto M. (2015). Neural signatures of autism spectrum disorders: Insights into brain network dynamics. Neuropsychopharmacology, 40(1), 171-189. [28] Honda Y., Nakato E., Otsuka Y., Kanazawa S., Kojima S., Yamaguchi M. K., & Kakigi R. (2010). How do infants perceive scrambled face? A near-infrared spectroscopic study. Brain Research, 1308, 137-146. [29] Ichikawa H., Kitazono J., Nagata K., Manda A., Shimamura K., Sakuta R., et al. (2014). Novel method to classify hemodynamic response obtained using multi-channel fNIRS measurements into two groups: Exploring the combinations of channels. Frontiers in Human Neuroscience, 8, 1-10. [30] Itahashi T., Yamada T., Nakamura M., Watanabe H., Yamagata B., Jimbo D., et al. (2015). Linked alterations in gray and white matter morphology in adults with high-functioning autism spectrum disorder: A multimodal brain imaging study. NeuroImage: Clinical, 7, 155-169. [31] Jung C. E., Strother L., Feil-Seifer D. J., & Hutsler J. J. (2016). Atypical asymmetry for processing human and robot faces in autism revealed by fNIRS. PLoS ONE, 11(7), e0158804. [32] Kajiume A., Aoyama-Setoyama S., Saito-Hori Y., Ishikawa N., & Kobayashi M. (2013). Reduced brain activation during imitation and observation of others in children with pervasive developmental disorder: A pilot study. Behavioral and Brain Functions, 9(1), 1-5. [33] Kawakubo Y., Kuwabara H., Watanabe K. I., Minowa M., Someya T., Minowa I., et al. (2009). Impaired prefrontal hemodynamic maturation in autism and unaffected siblings. PLoS ONE, 4(9), e6881. [34] Kikuchi M., Yoshimura Y., Shitamichi K., Ueno S., Hiraishi H., Munesue T., et al. (2013). Anterior prefrontal hemodynamic connectivity in conscious 3-to 7-year-old children with typical development and autism spectrum disorder. PLoS ONE, 8(2), e56087. [35] Kimmig A. C. S., Dresler T., Hudak J., Haeussinger F. B., Wildgruber D., Fallgatter A. J., et al. (2019). Feasibility of NIRS-based neurofeedback training in social anxiety disorder: Behavioral and neural correlates. Journal of Neural Transmission, 126(9), 1175-1185. [36] Kita Y., Gunji A., Inoue Y., Goto T., Sakihara K., Kaga M., et al. (2011). Self-face recognition in children with autism spectrum disorders: A near-infrared spectroscopy study. Brain and Development, 33(6), 494-503. [37] Kondyli D., Stathopoulou D., Badcock N. A., & Papadatou-Pastou M. (2017). Cerebral laterality for the generation of silent and written language in male and female right-and left-handers: A functional transcranial doppler ultrasound study. Acta Neuropsychologica, 15(4), 407-432. [38] Kouijzer M. E., de Moor J. M., Gerrits B. J., Buitelaar J. K., & van Schie, H. T. (2009). Long-term effects of neurofeedback treatment in autism. Research in Autism Spectrum Disorders, 3(2), 496-501. [39] Kouijzer M. E., de Moor J. M., Gerrits B. J., Congedo M., & van Schie, H. T. (2009). Neurofeedback improves executive functioning in children with autism spectrum disorders. Research in Autism Spectrum Disorders, 3(1), 145-162. [40] Kruppa J. A., Reindl V., Gerloff C., Oberwelland Weiss E., Prinz J., Herpertz-Dahlmann B., et al. (2021). Brain and motor synchrony in children and adolescents with ASD-A fNIRS hyperscanning study. Social Cognitive and Affective Neuroscience, 16(1-2), 103-116. [41] Kuwabara H., Kasai K., Takizawa R., Kawakubo Y., Yamasue H., Rogers M. A., et al. (2006). Decreased prefrontal activation during letter fluency task in adults with pervasive developmental disorders: A near-infrared spectroscopy study. Behavioural Brain Research, 172(2), 272-277. [42] Li J., Qiu L., Xu L., Pedapati E. V., Erickson C. A., & Sunar U. (2016). Characterization of autism spectrum disorder with spontaneous hemodynamic activity. Biomedical Optics Express, 7(10), 3871-3881. [43] Li, Y., & Yu, D. (2016). Weak network efficiency in young children with autism spectrum disorder: Evidence from a functional near-infrared spectroscopy study. Brain and Cognition, 108, 47-55. [44] Li, Y., & Yu, D. (2018). Variations of the functional brain network efficiency in a young clinical sample within the autism spectrum: A fNIRS investigation. Frontiers in Physiology, 9, 1-11. [45] Liu N., Cliffer S., Pradhan A. H., Lightbody A., Hall S. S., & Reiss A. L. (2016). Optical-imaging-based neurofeedback to enhance therapeutic intervention in adolescents with autism: Methodology and initial data. Neurophotonics, 4(1), 011003. [46] Marsh K. L., Richardson M. J., & Schmidt R. C. (2009). Social connection through joint action and interpersonal coordination. Topics in Cognitive Science, 1(2), 320-339. [47] Mason R. A., Williams D. L., Kana R. K., Minshew N., & Just M. A. (2008). Theory of mind disruption and recruitment of the right hemisphere during narrative comprehension in autism. Neuropsychologia, 46(1), 269-280. [48] McAlonan G. M., Suckling J., Wong N., Cheung V., Lienenkaemper N., Cheung C., & Chua S. E. (2008). Distinct patterns of grey matter abnormality in high‐functioning autism and Asperger’s syndrome. Journal of Child Psychology and Psychiatry, 49(12), 1287-1295. [49] McCartney, G., & Hepper, P. (1999). Development of lateralized behaviour in the human fetus from 12 to 27 weeks’ gestation. Developmental Medicine and Child Neurology, 41(2), 83-86. [50] Minagawa-Kawai Y., Naoi N., Kikuchi N., Yamamoto J. I., Nakamura K., & Kojima S. (2009). Cerebral laterality for phonemic and prosodic cue decoding in children with autism. Neuroreport, 20(13), 1219-1224. [51] Nakadoi Y., Sumitani S., Watanabe Y., Akiyama M., Yamashita N., & Ohmori T. (2012). Multi‐channel near‐infrared spectroscopy shows reduced activation in the prefrontal cortex during facial expression processing in pervasive developmental disorder. Psychiatry and Clinical Neurosciences, 66(1), 26-33. [52] Nguyen T., Miguel H. O., Condy E. E., Park S., & Gandjbakhche A. (2021). Using functional connectivity to examine the correlation between mirror neuron network and autistic traits in a typically developing sample: A fNIRS study. Brain Sciences, 11(3), 397-407. [53] Pecukonis M., Perdue K. L., Wong J., Tager-Flusberg H., & Nelson C. A. (2021). Exploring the relation between brain response to speech at 6-months and language outcomes at 24-months in infants at high and low risk for autism spectrum disorder: A preliminary functional near-infrared spectroscopy study. Developmental Cognitive Neuroscience, 47, 100897. [54] Philip R. C., Dauvermann M. R., Whalley H. C., Baynham K., Lawrie S. M., & Stanfield A. C. (2012). A systematic review and meta-analysis of the fMRI investigation of autism spectrum disorders. Neuroscience & Biobehavioral Reviews, 36(2), 901-942. [55] Quiones‐Camacho L. E., Fishburn F. A., Belardi K., Williams D. L., Huppert T. J., & Perlman S. B. (2021). Dysfunction in interpersonal neural synchronization as a mechanism for social impairment in autism spectrum disorder. Autism Research, 14(8), 1585-1596. [56] Rosenberg P. B., Nowrangi M. A., & Lyketsos C. G. (2015). Neuropsychiatric symptoms in Alzheimer’s disease: What might be associated brain circuits? Molecular Aspects of Medicine, 43, 25-37. [57] Scholkmann F., Kleiser S., Metz A. J., Zimmermann R., Pavia J. M., Wolf U., & Wolf M. (2014). A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage, 85, 6-27. [58] Sitaram R., Ros T., Stoeckel L., Haller S., Scharnowski F., Lewis-Peacock J., et al. (2017). Closed-loop brain training: The science of neurofeedback. Nature Reviews Neuroscience, 18(2), 86-100. [59] Sperdin, H. F., & Schaer, M. (2016). Aberrant development of speech processing in young children with autism: New insights from neuroimaging biomarkers. Frontiers in Neuroscience, 10, 1-15. [60] Su W. C., Culotta M., Mueller J., Tsuzuki D., Pelphrey K., & Bhat A. (2020). Differences in cortical activation patterns during action observation, action execution, and interpersonal synchrony between children with or without autism spectrum disorder (ASD): A fNIRS pilot study. PLoS ONE, 15(10), e0240301. [61] Su W. C., Culotta M., Tsuzuki D., & Bhat A. (2021). Movement kinematics and cortical activation in children with and without autism spectrum disorder during sway synchrony tasks: A fNIRS study. Scientific Reports, 11(1), 1-13. [62] Supekar, K., Menon, V. (2015). Sex differences in structural organization of motor systems and their dissociable links with repetitive/restricted behaviors in children with autism. Molecular Autism, 6(1), 1-13. [63] Toga, A. W., & Thompson, P. M. (2003). Mapping brain asymmetry. Nature Reviews Neuroscience, 4(1), 37-48. [64] Wang A. T., Lee S. S., Sigman M., & Dapretto M. (2006). Neural basis of irony comprehension in children with autism: The role of prosody and context. Brain, 129(4), 932-943. [65] Wang Q., Han Z., Hu X., Feng S., Wang H., Liu T., & Yi L. (2020). Autism symptoms modulate interpersonal neural synchronization in children with autism spectrum disorder in cooperative interactions. Brain Topography, 33(1), 112-122. [66] Weiner, K. S., & Zilles, K. (2016). The anatomical and functional specialization of the fusiform gyrus. Neuropsychologia, 83, 48-62. [67] Xu L., Geng X., He X., Li J., & Yu J. (2019). Prediction in autism by deep learning short-time spontaneous hemodynamic fluctuations. Frontiers in Neuroscience, 13, 1-12. [68] Yeung M. K., Lee T. L., & Chan A. S. (2019). Frontal lobe dysfunction underlies the differential word retrieval impairment in adolescents with high-functioning autism. Autism Research, 12(4), 600-613. [69] Zhu H., Fan Y., Guo H., Huang D., & He S. (2014). Reduced interhemispheric functional connectivity of children with autism spectrum disorder: Evidence from functional near infrared spectroscopy studies. Biomedical Optics Express, 5(4), 1262-1274.